## Cosmic Rays, galaxies and

Volker Heesen (University of Hamburg)

With contributions from Henrik Edler, Aritra Basu, Michael Stein, Julia Piotrowska, Lovorka Gajović, and Krzysztof Chyży





## **Cosmic rays and magnetic fields in galaxies** why study them?

- Regulate outflows and accretion of matter
- Are important for galaxy evolution
- GeV-protons energetically most influential
- GeV-electrons are observed in the radio as cosmic-ray electrons (CREs)





Tumlinson et al. (2017)



## Radio continuum emission from star-forming galaxies





Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

#### free-free radiation







UHH / D. Engels







## But there are some complications with measuring radio star-formation rates

- Leakage of cosmic-ray electrons from galaxies
- Can be observed as radio haloes (Heald et al. 2022; Stein et al. 2023
- Cosmic ray-driven winds (Breitschwert et al. 1992, Everett et al. 2008, Recchia et al. 2016
- Thermal (free-free) absorption (talk by Gajovic)



Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

151.0 Myr



10 kpc

Salem & Bryan (2014)



|   | _ |   |
|---|---|---|
|   |   | 1 |
| Λ |   |   |
| 4 |   |   |



GAMA (Davies et al. 2017) CHANG-ES (Li et al. 2016) ELAIS-N1 (Smith et al. 2021)

## relation

$$\alpha SFR^{1}$$

Virgo Cluster (Edler et al. 2023, and in prep)



Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

## Herschel ATLAS



Gürkan et al. (2018)



## LOFAR observations 144 MHz data

- LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017, 2019, 2022)
- 6 arcsec resolution is 300 pc at median distance of 11 Mpc
- Galaxies from KINGFISH, SINGS, and CHANG-ES
- Spitzer and Herschel infrared data (Kennicutt et al. 2003, 2011)
- High-frequency radio data from WSRT and JVLA (Braun et al. 2007, Wiegert et al. 2015)







## Semi-calorimetric radio-SFR relation super-linear with L<sub>144</sub> ~ SFR<sup>1.4-1.5</sup>

## Radio continuum luminosity:





Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023





## How to estimate calorimetric efficiency? Use low-frequency radio spectral index!

#### steep spectrum



#### flat spectrum



Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023



#### Spectral ageing



Klein and Fletcher (2015)



## SFR from total infrared







Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023



star-formation radius from radio

Rotation speed from HI line width







# Galaxy size determines radio spectral index Spectral index does not depend on $\Sigma_{SFR}$





Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

*h*: scale height ~ *r*★

 (Krause et al. 2018)
 *v*: wind velocity ~ Σ<sub>SFR</sub>
 (Heckman et al. 2015, Heesen et al. 2018)

B: magnetic field strength  $B \sim \Sigma_{\rm SFR}^{1/3}$ (Tabatabaei et al. 2018, Heesen et al. 2023)

radio spectral index

<sup>L</sup>syn



## Mass dependency of radio-SFR relation using the mass-size scaling relation





Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

$$L_{144 \text{ MHz}} = L_C \text{SFR} M_{\text{tot}}^{\gamma}$$

(Gürkan et al. 2018, Smith et al. 2021)

$$\eta = \frac{1}{1 + \frac{t_{\text{syn}}}{t_{\text{esc}}}} \approx \frac{1}{2} \sqrt{\frac{t_{\text{esc}}}{t_{\text{syn}}}}$$

depends only on galaxy radius

### $\eta \propto \mathrm{SFR}^{0.05} M_{\mathrm{tot}}^{0.27}$

$$M_{\rm tot} \sim r_{\star}^{1/3}$$





## Spatially resolved radio-SFR relation and radio spectral index

- Local radio-SFR:  $I_{\nu}$ - $\Sigma_{SFR}^{0.6-0.8}$
- Radio spectral index dependence
  - Steep spectrum: radio bright
  - Flat spectrum: radio faint
- Global radio-SFR: L<sub>v</sub>-SFR<sup>1.1-1.5</sup>





## Influence of cosmic-ray transport on the radio-SFR relation

- Young CREs near the sources not affected by transport
- radio–SFR relation is almost linear with  $I_{\nu}$ – $\Sigma_{SFR}^{0.9}$  (Heesen et al. 2019)
- Also observed in spiral arms of individual galaxies (Dumas et al. 2011, Basu et al. 2012)

Multi-frequency insight into Cosmic Ray Electron transport in spiral galaxy NGC 6946

![](_page_12_Picture_5.jpeg)

Julia Piotrowska<sup>1</sup>, K. T. Chyży<sup>1</sup> + MKSP <sup>1</sup>Astronomical Observatory of the Jagiellonian University

![](_page_12_Picture_7.jpeg)

![](_page_12_Figure_9.jpeg)

Heesen et al. (2023) in prep.

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

## Calorimetric efficiency and the local radio-SFR relation

Ratio of radio-to-hybrid SFR

 $\eta(\alpha) = (\Sigma_{\rm SFR})_{\rm RC}/(\Sigma_{\rm SFR})_{\rm hyb}$ 

radio continuum / hybrid SFR surface density

- Dependence on radio spectral index
- Old CRE are bright, young are faint

![](_page_13_Picture_6.jpeg)

![](_page_13_Figure_8.jpeg)

![](_page_13_Figure_9.jpeg)

![](_page_13_Picture_11.jpeg)

![](_page_13_Figure_12.jpeg)

## **Corrected radio-SFR relation** on the radio-SFR relation

- Correct radio SFR for calorimetric efficiency
- Use parametrisation with radio spectral index

 $(\Sigma_{\rm SFR})_{\rm RC}/\eta(\alpha) \propto (\Sigma_{\rm SFR})_{\rm hvb}^{1.05\pm0.02}$ 

Almost linear radio–SFR relation

![](_page_14_Picture_5.jpeg)

![](_page_14_Figure_7.jpeg)

## **Universal radio-SFR relation** for both global and local measurements

- Correct global radio–SFR relation with CRE calorimetric efficiency
- Parametrisation with radio spectral index
- Same slope and normalisation as for local radio–SFR relation

#### slope = 1.03 +/- 0.07

![](_page_15_Picture_5.jpeg)

Volker Heesen – Cosmic Rays, galaxies and LOFAR – LOFAR Family Meeting 2023

![](_page_15_Figure_7.jpeg)

![](_page_15_Figure_8.jpeg)

## Conclusions and summary

- Non-linear <u>global</u> radio-SFR relation requires cosmic-ray escape such as observed as galactic winds in radio haloes
- Larger galaxies have to higher calorimetric efficiencies
- Sub-linear local radio–SFR relation requires cosmic-ray transport which is energy-independent diffusion
- Cosmic-ray electron calorimetric efficiency depends on radio spectral index
- Corrected radio–SFR relation is universal for both global and local SFRs

![](_page_16_Picture_6.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)