

The LOFAR-View of Ram-Pressure Stripping in the Virgo Cluster

First insights from the ViCTORIA project H. W. Edler, I. Roberts, F. de Gasperin, V. Heesen, A. Boselli , T. Shimwell, M. Brüggen et al.

LOFAR Family Meeting 2023, UWM Olsztyn

Henrik Edler, Hamburg Observatory, 13 Juni 2023

ntroduction Galaxy evolution in different environments

- Cluster galaxies: less gas & star-formation rate (SFR)
- Significant contribution from ram-pressure stripping (RPS)
- Removes gas reservoir \rightarrow quenching
- In the radio band
 - Identify RPS through non-thermal tails
 - Trace SFR \rightarrow excess in RPS galaxies

Non-thermal tail [Roberts+22]

Galaxy: SDSS/114313.08+200017.4 Cluster: A1367

Victor Virgo Cluster multi-Telescope Observations in Radio of Interacting galaxies and AGN

Aim: Drastically improve the multi-frequency radio-coverage of Virgo
→ Enable studies of the environmental effects in galaxies and AGN

1. LOFAR HBA: 144 MHz

2. LOFAR LBA: 54 MHz

3. MeerKAT: 1.3 GHz

Victoria project

Aim: Drastically improve the multi-frequency radio-coverage of Virgo → Enable studies of the **environmental effects** in galaxies and AGN

LOFAR HBA: 144 MHz

2. LOFAR LBA: 54 MHz

3. MeerKAT: 1.3 GHz

Virgo Cluster multi-Telescope Observations in Radio of Interacting galaxies and AGN

RA [h:m:s]

Census of Ram-Pressure Stripping in Virgo New candidates of RPS in radio

Newly reported in radio

Starting to probe lower-mass systems and less extreme cases of RPS

LOFAR Sample of Virgo cluster RPS galaxies

➡Compare RPS sample with statistical sample of 135 LOFAR-detected star-forming galaxies in the Herschel Reference Survey

Radio-SFR relation Normal vs. stripped galaxies

- $L_{144} = N_0 SFR^{\delta}$, $\delta = 1.33$
- Most of RPS galaxies show radio-excess!
 - **1.Enhanced magnetic field due to compression** [Gavazzi+99]
 - **2.Re-acceleration at shocks** [Völk+94, Murphy+09]
 - Flatter SI + enhanced SB at location of shock

3.Rapid decline in SFR [lgnesti+22]

Steeper spectral index

Nature of the Radio-Excess **Compare expected and observed radio emission**

- SFR surface density from GALEX UV + Herschel IR
- Assume isotropic diffusion (Gaussian kernel)
- Convert to radio surface brightness using global radio-SFR relation

LOFAR HBA 20"

Strongest excess in tail Excess also across the disk

see also [Murphy+09]

Spectral Properties of RPS Galaxies Spectral index-mass relation

- Relation due to mass-dependent CR escape
- Non-stripped sample: good agreement with literature [Heesen+22]
- For RPS galaxies spectral indices steeper, even though CR-escape likely more efficient
- RPS galaxies host older cosmic raypopulations!

recent quenching of star-formation [e.g. lgnesti+22]

1.4 GHz from [Murphy+09, Chung+09, Vollmer+10, Boselli+15]

Outlook ViCTORIA MeerKAT and LBA

MeerKAT and **LOFAR LBA** Virgo Cluster

MeerKAT pilot, $\sigma \ge 10 \mu Jy/beam$

Conclusion

- **LOFAR HBA** Virgo Cluster Survey
 - Catalog of 112 cluster member galaxies
 - ~18 cases with RPS morphology in radio
- LOFAR-HRS-sample
 - Confirm low-frequency radio-SFR-relation
 - Clear radio-excess in galaxies that suffer from RPS lacksquare
 - Excess usually in tail, also across the disk, leading edge deficit
 - RPS galaxies show steeper spectral index -> decline in SF-activity?
- Outlook
 - MeerKAT Survey all data taken + first study on the way
 - LOFAR LBA Survey- first cycle of data taken

Data paper: "ViCTORIA Project: The LOFAR HBA Virgo Cluster Survey" **arXiv:**2306.04513 <u>lofar-surveys.org/virgo_data.html</u>

Cosmic ray diffusion lengths at 144 MHz

Results from linearizing SFR-surface density-radio relation.

Some objects (NGC4254, NGC4302) show fast CRtransport -> imprint of advection/ram pressure?

Galaxy	I _{CR} [kpc]
NGC 4254	5.4
NGC 4302	4.0
NGC 4330	1.8
NGC 4396	1.3
NGC 4402	1.6
NGC 4424	1.4
NGC 4501	0.9
NGC 4522	1.3
NGC 4569	1.9
NGC 4607	1.4
NGC 4654	3.0
IC 800	1.65
IC 3105	1.2
IC 3258	1.8
IC 3476	1.74

Radio-SFR-Correlation at 144 MHz Correlation-fitting

Tension between radio-SFR relation of nearby galaxies [Virgo/this work; Heesen+22] and more distant samples [Gurkan+18; Smith+20]?

➡Caused by different mass selection (~factor 10) difference!)

account mass dependence

Radio-SFR-Correlation at 144 MHz Correlation-fitting

- Radio-SFR relation $L_{144 \text{ MHz}} = N_0 \text{ SFR}_X^{\beta}$
- Super-linear slope ~1.3-1.4, in agree LOFAR results [Heesen+22]

Explanation: mass-dependent CR-escape: $\tau_{esc} = \tau_{esc}(M)$

	-	• • •	
em	nent	with	recent

SFR- tracer	Sample	
IR	132	1.2
На	113	1.3
UV	114	1.4

Radio-SFR relation Including stellar mass

 Non-linearity: can be explained by calorimetric efficiency $\eta = \eta (M_{star}) [Gurkan+18, Heesen+22]$

 $L_{144} \propto \eta \text{SFR} = \text{SFR} \cdot M_{\text{star}}^{\gamma}$

Positive relation with mass

SFR-tracer	X
IR	0.05
Ηα	0.24
UV	0.21

Star formation tracers **Double-Power law**

- Test: Fit power-law in both SFR and mass: $L_{144} = N_0 \text{SFR}^{\beta} M_{\text{stan}}^{\gamma}$
- Find positive dependence on mass, SFR-dependence closer to linear (for Ha, UV)

SFRß X tracer (-0.17)(IR) (1.35)0.13 Ha 1.2 UV 1.30 0.06

First MeerKAT - HBA Spectral Indices Leading-edge flattening - ionization losses?

LOFAR Virgo Catalog **Completeness of Deconvolution**

- Low surface-brightness, highly resolved sources \rightarrow manual masking during imaging

Use low-resolution mosaics for measurements, flag sources that are affected

Still in some cases (usually high noise fields) flux density estimate in high-resolution mosaics not reliable!

LOFAR Virgo Catalog Flux density measurement

- Inspect galaxies in optical catalog¹
- Visible emission? → construct manual source region
- Require S/N > 4
- Remove misidentifications using optical overlay

Right Ascension (J2000)

12^h19^m00^s Right Ascension (J2000)

24^s

12^h23^m20^s 00s 22^m40^s Right Ascension (J2000) NGC4459 / VCC1154

40^s 12^h29^m20^s 00s 28^m50^s 40^s Right Ascension (J2000)

NGC4254 / VCC307

00s 12^h19^m12^s 18^m48^s 36^s Right Ascension (J2000)

12^h23^m20^s 22^m40^s Right Ascension (J2000)

12^h29^m20^s 28^m50^s Right Ascension (J2000)

Right Ascension (J2000)

The LOFAR-HRS-Sample SF-Galaxies in different environments

- Herschel Reference Survey (HRS, [Boselli+10])
 - Volume-limited, K-band selected
 - Great data on SFR-tracers available (Hα, IR, UV...)
- 247 galaxies covered by LOFAR
 - Sample of 135 galaxies detected after removing early-types and AGN

LOFAR Virgo Cluster Survey **Survey Strategy**

- Area: 132 deg²
- 9 fields: 64h central / 8h outer fields
- Frequency: 144 MHz
- "Peeling"-strategy to handle M87
 - 1. High-quality model
 - Peeling-pipeline 2.
 - 3. DD-calibration (ddf-pipeline)

EVCC: Membership Classification Kim et al. 2015

Redshift-based spherical infall model

Early-type galaxies in the Virgo Cluster

LOFAR detections of ACS Virgo cluster survey early-type sample (100 galaxies Coté+ 2004) VLA study of this sample (Capetti+ 2009) detected radio emission for twelve of them)

28^m54