Technical challenges of long-baseline imaging

LOFAR Family Meeting, 12 - 16 June 2023, Olsztyn, Poland

Dr. Leah Morabito UKRI Future Leaders Fellow & Assoc Prof

KK

UK Research and Innovation

The International LOFAR Telescope

The International LOFAR Telescope

VLBI with LOFAR - *u*-*v* coverage

VLBI with LOFAR - Field of View (FoV)

Limited by:

• Station beam of international stations

VLBI with LOFAR - Field of View (FoV)

Limited by:

- Station beam of international statio
- Smearing (bandwidth and time)

VLBI with LOFAR - Field of View (FoV)

Limited by:

- Station beam of international statio
- Smearing (bandwidth and time)

Clock values are easily solved for on standard flux calibrators

Phase errors are dominated by **dispersive delays from the ionosphere**, which is a *direction-dependent* effect

Clock values are easily solved for on standard flux calibrators

Phase errors are dominated by **dispersive delays from the ionosphere**, which is a **direction-dependent** effect

Requires full bandwidth **or** enough signal/noise that you can solve for phases in small Δt , Δv

Clock values are easily solved for on standard flux calibrators

Phase errors are dominated by **dispersive delays from the ionosphere**, which is a **direction-dependent** effect

Requires full bandwidth **or** enough signal/noise that you can solve for phases in small Δt , Δv

Need a suitable in-field calibrator

- **Calibrators:** need 'Goldilocks' calibrators for resolution / frequency
- **Data volume:** datasets are 4-20TB per observation
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **Ionosphere:** requires directional dependent calibration
- **Source characteristics:** low-frequency absorption, source structure

- **Calibrators:** need 'Goldilocks' calibrators for resolution / frequency
- **Data volume:** datasets are 4-20TB per observation
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **Ionosphere:** requires directional dependent calibration
- **Source characteristics**: low-frequency absorption, source structure

Long Baseline Calibrator Survey (LBCS)

<u>Covers entire Northern sky for HBA</u> (Jackson et al, 2022, 2016)

- Multi-beaming with 3 MHz, 3 min observations of calibrator candidates
- ~30,000 sources in final catalogue, about 1 good calibrator per square deg.

Long-baseline calibrator survey

The Long-Baselin flux density at fre	ne Calibrator Survey (LBCS) is ain quencies around 110–190 MHz o	ned at identifying suitable for calibri on scales of a few hundred milliarcs	ating the highest-resolution observations made with the internatio econds. For a description of the survey see <u>Jackson et al. (2016)</u> .
Data products fr	om the survey are available on th	is site. You may <u>download the full o</u>	atalogue, search the catalogue in a particular region of the sky or
HTML table Enter a position of	and radius in decimal degrees to	search the catalogue:	
RA:	DEC:	Radius:	
Get HITML table			
FITS table			
Enter a position of	and radius in decimal degrees to	search the catalogue:	
RA:	DEC:	Radius:	
Get FITS table			

lofar-surveys.org

• Commissioning project to extend to LBA (PI: Jackson)

- **Calibrators:** need 'Goldilocks' calibrators for resolution / frequency
- Data volume: datasets are 4-20TB per observation
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **Ionosphere:** requires directional dependent calibration
- **Source characteristics**: low-frequency absorption, source structure

Developing a calibration strategy

LoTSS processing Full array – instrumental effects Dutch array – phases

de Gasperin et al. 2019

LOFAR-VLBI pipeline

Dispersive delay Phase calibration

Techniques

- Combine core stations
- Phase-shift & average to reduce FOV
- now uses facetselfcal!

Calibration uses LOFAR-native tools but borrowing from VLBI techniques

Demonstration: P205+55

Field of view limited to 1.25° radius (by smearing and station beams)

Demonstration: P205+55

Field of view limited to 1.25° radius (by smearing and station beams)

1. Find dispersive delays on best LBCS in-field calibrator

Demonstration: P205+55

Field of view limited to 1.25° radius (by smearing and station beams)

- 1. Find dispersive delays on best LBCS in-field calibrator
- 2. Apply to field / other sources
- 3. Self-calibrate residual errors

Developing a calibration strategy

Demonstration: Lockman Hole

- 8 hour observation
- 36 µJy/beam median noise
- Field of View 6.6 deg2
- 2,214 sources
- 250,000 CPU hours

Sweijen et al. 2022

Demonstration: Lockman Hole

- 8 hour observation
- 36 µJy/beam median noise
- Field of View 6.6 deg2
- 2,214 sources

esolution image

• 250,000 CPU hours

Have we solved all the problems?

- ✓ Long Baseline Calibrator Survey is complete
 - ✓ Still poor coverage below +30° dec, but can use observation itself (although cumbersome)
- Pipeline for in-field calibrators / individual sources V4.0 available
 - CWL version being tested, still need optimisation and some quality controls
 - \checkmark In-field calibration for delays works, but still needs to be optimised to work in all cases
- ✓ Widefield VLBI imaging successfully demonstrated in Lockman Hole
 - Working on optimising algorithms / software to reduce computational cost

Do we need LOFAR2.0?

Yes! Increased sensitivity, and ability to extend this to LBA