LOFAR facetselfcal

Leiden Observatory, Leiden University

Reinout van Weeren

Outline

- Surveys reprocessing
- ILT calibration and polarization imaging

• LBA decameter band: Christian Groeneveld & Erik Osinga

Potential

3C338

Roland Timmerman 120-168 MHz — 0.3" resolution

LoTSS & LoLSS post-processing

slide: Tim Shimwell

- Facet layout can be nonoptimal for target-of-interest given that DDE corrections work on a per-facet basis
- Target can be located in two or more overlapping pointings
- Weightings scheme and uvcuts might not be ideal for science case
- Re-imaging is expensive (uvtapers, weightings, different deconvolution)

DDF-pipeline (Tasse+ 2021) makes use of DDFacet and kMS for calibration and imaging (Tasse+ 2014; Smirnov+ 2015; Tasse+ 2017). LoLSS pipeline (de Gasperin+2019,2020,2021) makes use of DDFacet, WSClean (Offringa+ 2014; Offringa & Smirnov 2017) and DP3 (van Diepen+ 2018).

LoTSS & LoLSS post-processing

- Facet layout can be nonoptimal for target-of-interest given that DDE corrections work on a per-facet basis
- Target can be located in two or more overlapping pointings
- Weightings scheme and uvcuts might not be ideal for science case
- Re-imaging is expensive (uvtapers, weightings, different deconvolution)

DDF-pipeline (Tasse+ 2021) makes use of DDFacet and kMS for calibration and imaging (Tasse+ 2014; Smirnov+ 2015; Tasse+ 2017). LoLSS pipeline (de Gasperin+2019,2020,2021) makes use of DDFacet, WSClean (Offringa+ 2014; Offringa & Smirnov 2017) and DP3 (van Diepen+ 2018).

"facetselfcal"

van Weeren+ (2021)

- 1. Perturbative solves (+ automated selfcal)
- 2. Start with biggest effect first
- 3. Continue with next biggest effect
- 4. Solution interval computed based on visibility noise and model flux
- 5. Arbitrary number of perturbative steps possible without needing to write code (e.g., ILT infield calibrator uses 6th order perturbation)
- 6. Options 5 makes it a powerful tool to hunt down calibration limitations and test ideas

https://github.com/rvweeren/lofar_facet_selfcal

LoTSS DR2 re-processing

ILT: long baselines

ELAIS-N1 Jurjen de Jong (poster)

ILT: ELAIS-N1

Jurjen de Jong

ILT calibration: triple-step calibration approach

Morabito+ (2022) Sweijen+ (2022)

- 1. primary calibrator: instrumental effects
- 2. *facetselfcal*: in-field calibrator (corrects bulk of the ionosphere and clock)
- 3. *facetselfcal*: dozens of facet calibrators (DDE ionosphere+beam)

ELIAS-N1 polarization at 20"

Herrera Ruiz+ (2021)

ELIAS-N1 polarization at 20"

Jurjen de Jong 0.3″ resolution

ELIAS-N1 polarization at 0.3"

ELIAS-N1 polarization at 0.3"

- Polarization signal comes from the hotspot
- RM in good agreement with Herrera Ruiz+ (2021)

Herrera Ruiz+	(2021)
---------------	--------

Epoch	Date	λ_0^2 [m ²]	RM [rad m ⁻²]	$\Delta \chi_{ m corr}$ [deg]
020	2015-06-07	4.412	5.86 ± 0.03	17.8 ± 1.7
024	2015-06-19	4.371	5.91 ± 0.03	"Reference"
027	2015-06-29	4.414	5.94 ± 0.03	-1.7 ± 1.7
028	2015-07-01	4.413	5.95 ± 0.02	-10.3 ± 1.8
030	2015-08-07	4.346	5.99 ± 0.05	-25.8 ± 1.8
031	2015-08-22	4.413	6.03 ± 0.04	-15.5 ± 1.8

Summary

facetselfcal: van Weeren+ (2021)

- facetselfcal: single target calibration can optimize science return from the LOFAR surveys
- facetselfcal: enables high-quality ILT imaging
- Subarcsecond resolution polarization studies can be done with the ILT
- facetselfcal: tackle calibration challenges and develop new ideas