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Average profiles of radio pulsars
have left-right symmetry:
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Rankin 83, Teixeira et al. 2015

Navarro et al. 1997

=> nested cone model (rs7s, Backer7s, Rankin 82)

Cones from separated levitating rings?
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light magnetic
cylinder axis

Three models for nested cone geometry

Critical and last open lines Scattering: X mode core

(Wright 2003) Refraction: X mode core Lyubarskii & Petrova, Blandford
Cone size ratio = 0.75 - 0.82

Observed: 0.74 — 0.87 So far applied

No special cone size

Rankin method: several steps, Only one cone? for unusual features
strong/dubious assumptions (precursors, backward
How to discern from... interpulses)

Why core polarized as X mode?
Can work for the cones?



Universal scattering angle

Rays emitted tangent to B cross B at angle that increases with scattering altitude...

3

...but soon the scattering ~
angle gets fixed =>

radio waves scattered along local B => in the same direction regardless of scat. altitude or MFP



INNER TO OUTER CONE SIZE RATIO = 2/3

Local dipolar B crosses a radial line at a fixed angle Far from frame origin any line is radial

(3/4)6,,

(approximately)

local crossing angle = half of the polar angle
of propagation

(independent of r)

Original

polar + Scattering = Final polar
angle angle angle

32 + Y4 = 9/4
= 3/2 x 3/2

= 1.5 times larger than original

=> inner to outer cone size ratio = 2/3



Conal radii: rhoin, rhoout — directly not measurable
unknown: Dipole tilt alpha, sightline distance from beam center beta

Peak-to-peak separations (widths): Win, Wout - directly measurable
for inner and outer pair of components.

Measure the RATIO of the widths: Rw = Win / Wout

for all Q and M pulsars (with 4 and 5 components)

olarization Angle

o in N - path of sightline

g - impact
angle

DP2015: Distribution of Rw ratio does not depend on alpha, P, r_em, nu



Win = 0 when the line of sight is just grazing the inner cone
Win = max for the central cut

For the central traverse through the beam Rw is maximal
and equal to the cone size ratio

RwW=W_in/ W_out

ﬁ/pin RW
0.999025 0.05
0.9910 0.15
0.974 0.25
0.8% : 0.43

\ 0.55

0.814 // \
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Dyks & Pierbattista 2015



Observed Rw
distribution:

(30 pulsars

of Q and M type)

Three objects with the maximum value = 0.63
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radio flux (Stokes 1)

S_t profiles: conals emerge at high nu

)
=> blueshifted by the scattering: Vabs i X Ve.m
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Bifurcated components (BCs)

Bifurcated components of Type 2: wide (8 deg), resolved.
merging as curvature radiation microbeam  (at v“”/?’ ),
shape similar to nu-integrated CR microbeam &

J1012+5307 (P = 5.2 ms)
i GBT (P. Demorest) —

i At ~ 15 hours (>10’ single pulses) |
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Curvature radiation microbeam directly revealed in average pulse profile?



Nu-resolved BC is well modelled by nu-integrated CR microbeam
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Why nu-integrated beam almost reproduces the nu-resolved BC?

Why observed BC ten times wider than expected?

0.8

CR microbeam size: A e Lvﬁ‘o’ f::fz St:l,' Cfm-[- SEH‘S

Observed: 8 deg



Spectral stacking:

=> for each nu_em there exists such gamma that the scattered radiation
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Microbeam copying through the ray-to-ray scattering

Different rays are locally scattered along local velocity,
but the scattered flux is proportional to the incident flux

=> the microbeam is transported to high frequency
with the wide low-nu width preserved

New phenomenon: Doppler magnification

(transportation of intensity pattern
in the frequency space)

Shock: the sacred relativistic beaming formula:

A = 1/gamma

is not always applicable!



Bifurcated components (BCs):
112
Type 1: narrow, blurred and merging at V.

2
Vabsw b/ VE.W!

Scattering:

A
microbeam width: A ~

Y

=> ~A/4
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This is scattering in the limit of narrow spread of electron velocity directions
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Conclusions

The radio emission mechanism is ICS of CR (curvature-self-Compton radiation)

Scattering can explain:
- nested cones of appropriate size ratio
- some types of radius-to-frequency mapping
- bifurcated components
- much wider than expected at 1 GHz
- with nu-integrated shape
- merging with nu at the rate of -1/2
- makes the energy requirements much lower (a few orders of magnitude)

CR microbeam explains:
- the look and nu-dependence (narrowing at -1/3) of BCs

Shocking news: 1/gamma not always applicable
because the microbeam pattern can be Doppler-shifted in frequency



Outer cone emission from higher r than inner cone (which is higher than core)
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Separated emission rings
invoked from the core lag
interpreted as
the aberration

and retardation effect
(Gangadhara & Gupta 2001)

The levitating rings = average regions of scattering

of different orders



Previous figures superposed:
- for arbitrary MFP the rays are scattered at the same angle (3/2)theta _i
- recursive argument => cone size ratio = 2/3 (inner to outer)
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Short-MFP scattering at no special angle => boxy profiles
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