Inverse Compton scattering of curvature radiation as the origin of radio pulsar beam geometry

Jarek Dyks

Nicolaus Copernicus Astronomical Center Polish Academy of Sciences Toruń

bio by Richard Sidey

Average profiles of radio pulsars have left-right symmetry:

=> nested cone model (RS75, Backer76, Rankin 82)

CI

Three models for nested cone geometry

Critical and last open lines (Wright 2003) Cone size ratio = 0.75 - 0.82Observed: 0.74 - 0.87Rankin method: several steps, strong/dubious assumptions

Why core polarized as X mode?

Refraction: X mode core

No special cone size Only one cone?

How to discern from...

Scattering: X mode core Lyubarskii & Petrova, Blandford

So far applied for unusual features (precursors, backward interpulses)

Can work for the cones?

Universal scattering angle

Rays emitted tangent to B cross B at angle that increases with scattering altitude...

radio waves scattered along local B => in the same direction regardless of scat. altitude or MFP

INNER TO OUTER CONE SIZE RATIO = 2/3

Local dipolar B crosses a radial line at a fixed angle Far from frame origin any line is radial (approximately)

=> inner to outer cone size ratio = 2/3

Conal radii: **rhoin, rhoout** – directly not measurable unknown: Dipole tilt alpha, sightline distance from beam center beta

Peak-to-peak separations (widths): Win, Wout - directly measurable for inner and outer pair of components.

La Statuta

PSR 1237+25

DP2015: Distribution of Rw ratio does not depend on alpha, P, r_em, nu

Win = 0 when the line of sight is just grazing the inner cone Win = max for the central cut

Three objects with the maximum value = 0.63

S_t profiles: conals emerge at high nu

radio flux (Stokes I)

pulse longitude [deg]

Bifurcated components (BCs)

Bifurcated components of Type 2: wide (8 deg), resolved. merging as curvature radiation microbeam (at $v_{l}^{-1/3}$), shape similar to nu-integrated CR microbeam

Curvature radiation microbeam directly revealed in average pulse profile?

Nu-resolved BC is well modelled by nu-integrated CR microbeam

Why nu-integrated beam almost reproduces the nu-resolved BC?

Why observed BC ten times wider than expected?

 $\simeq \frac{0.8}{V^{1/3} p_7^{1/3} \sin \delta_{\rm cut} \sin 5}$

CR microbeam size:

Observed: 8 deg

Spectral stacking:

=> for each nu_em there exists such gamma that the scattered radiation reaches the same narrow observed frequency band

Vobs = Si Vem,i

Microbeam copying through the ray-to-ray scattering

Different rays are **locally scattered** along local velocity, but the scattered flux is proportional to the incident flux

=> the microbeam is transported to high frequency with the wide low-nu width preserved

New phenomenon: **Doppler magnification**

(transportation of intensity pattern in the frequency space)

Shock: the sacred **relativistic beaming formula**:

 $\Delta = 1/gamma$

is not always applicable!

Type 1: narrow, blurred and merging at \mathcal{V}_{de}

Λ

2.0

1.5

1.0

0.5

0.0

total flux [arbitrary units]

-1/2

Scattering:

microbeam width:

=>

This is scattering in the limit of narrow spread of electron velocity directions

Conclusions

The radio emission mechanism is ICS of CR (curvature-self-Compton radiation)

Scattering can explain:

- nested cones of appropriate size ratio
- some types of radius-to-frequency mapping
- bifurcated components
 - much wider than expected at 1 GHz
 - with nu-integrated shape
 - merging with nu at the rate of -1/2
- makes the energy requirements much lower (a few orders of magnitude)

CR microbeam explains:

- the look and nu-dependence (narrowing at -1/3) of BCs

Shocking news: 1/gamma not always applicable because the microbeam pattern can be Doppler-shifted in frequency Outer cone emission from higher r than inner cone (which is higher than core)

Separated emission rings invoked from the core lag interpreted as the aberration and retardation effect (Gangadhara & Gupta 2001)

The levitating rings = average regions of scattering of different orders

Previous figures superposed:

- for arbitrary MFP the rays are scattered at the same angle (3/2)theta_i
- recursive argument => cone size ratio = 2/3 (inner to outer)

Far from origin any line is radial

(approximately)

