Ionospheric corruptions of the high-redshift 21-cm signal

Stefanie Brackenhoff Kapteyn Astronomical Institute

Advisors:

Prof. dr. Léon Koopmans (Kapteyn) Prof. dr. ir. Alle-Jan van der Veen (TU Delft) Dr. André Offringa (ASTRON/Kapteyn) Dr. Maaijke Mevius (ASTRON)

Motivation

groningen faculty of science

and engineering Kapteyn Astronomical Institute

Image credit: Ger de Bruyn (very bad ionospheric conditions)

Motivation

groningen

faculty of science and engineering

LOFAR EoR and the lonosphere

Ionospheric scales & LOFAR

faculty of science and engineering

Ionospheric scales & LOFAR

Longer baseline

groningen faculty of science and engineering

Institute

Ionosphere & LOFAR EoR

Diffractive scale

university of groningen

faculty of science and engineering

Ionosphere & LOFAR EoR

Diffractive scale

university of groningen

faculty of science and engineering

Ionosphere & LOFAR EoR

Diffractive scale

faculty of science and engineering

The Simulation

Simulation

LoSiTo (Edler, 2021)
Integrates with DP3
→Same model for simulation and calibration
Simulate dispersive delays, model only turbulence

Model of ~ 700 sources (NCP field) + Cas A

faculty of science and engineering

Pipeline

• Simulate foregrounds with Simulation ionosphere + thermal noise All baselines Direction Independent Calibration (DP3) $(50 - 5000 \lambda)$ • Direction Dependent Calibration \rightarrow Long baselines (250 - 5000 λ) + Foreground subtraction (DP3) \rightarrow Short baselines (50 – 250 λ) Short baselines • UV-space flagging + Residual

foreground removal (ML-GPR)

groningen faculty of science and engineering

Kapteyn Astronomical Institute $(50 - 250 \lambda)$

Results

Simulate foregrounds with ionosphere + thermal noise

- Calibration (DI)
- Foreground subtraction (DD)
- Residual foreground removal (ML-GPR)

Yellow = foreground residuals

Before foreground subtraction: residuals 'simulated' using model visibilities

groningen

faculty of science and engineering Kapteyn

Astronomical Institute

Simulate foregrounds with ionosphere + thermal noise

- Calibration (DI)
- Foreground subtraction (DD)
- Residual foreground removal (ML-GPR)

Yellow = foreground residuals

Before foreground subtraction: residuals 'simulated' using model visibilities

groningen faculty of science

and engineering Kapteyn Astronomical Institute

• Simulate foregrounds with ionosphere + thermal noise

- Calibration (DI)
- Foreground subtraction (DD)
- Residual foreground removal (ML-GPR)

Yellow = foreground residuals

Before foreground subtraction: residuals 'simulated' using model visibilities

groningen faculty of science

and engineering Kapteyn Astronomical Institute

• Simulate foregrounds with ionosphere + thermal noise

- Calibration (DI)
- Foreground subtraction (DD)
- Residual foreground removal (ML-GPR)

Yellow = foreground residuals

university of groningen

faculty of science and engineering

Final Power Spectrum

 Simulate foregrounds with ionosphere + thermal noise

- Calibration (DI)
- Foreground subtraction (DD)
- Residual foreground removal (ML-GPR)

Residual PS

Foreground residuals gone

groningen faculty of science

and engineering Kapteyn Astronomical Institute 10³

• Simulate foregrounds with ionosphere + thermal noise

Calibration (DI)

 Foreground subtraction (DD)

Residual foreground removal (ML-GPR)

0.10

0.15

 k_{\perp} [hcMpc⁻¹]

Foreground residuals gone

0.20

0.05

groningen faculty of science and engineering

Kapteyn Astronomical Institute 10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

P (**k**)

Final Power Spectrum

Foregrounds removed completely

Residual PS / estimated noise

groningen faculty of science and engineering Kapteyn Astronomical

Institute

university of

No Additional Flagging

1.2

k_{||} [hcMpc⁻¹]

Feature at low kmodes starts to appear

Flag Cas A

•

university of groningen

faculty of science and engineering Kapteyn Astronomical

Institute

Default ML-GPR

No Additional Flagging

university of groningen faculty of science and engineering

No Additional Flagging

Feature at low kmodes starts to appear

Flag Cas A

 k_{\perp} [hcMpc⁻¹]

university of groningen

faculty of science and engineering

Fewer GPR Components

Stronger feature at low k-modes

groningen faculty of science and engineering

Worse lonosphere

Feature at low k-modes at same level as in observations

Flag Cas A

Simpler ML-GPR

groningen

faculty of science and engineering

Kapteyn Astronomical Institute Residual PS / estimated noise

Conclusions

Conclusions

- Ionospheric effects alone can likely be completely removed in LOFAR EoR data...
- But in the presence of ionospheric errors, removing off-axis sources is ineffective, even in an ideal case
- Must optimize configuration of (ML) GPR to remove ionospheric errors
 - Watch out for signal suppression
- Ionospheric errors may exacerbate other errors not discussed in this talk

Supplements

Model

Parameter	Value
Telescope	LOFAR HBA
Pointing	NCP
Model	684 sources + Cassiopeia, 15 directions
Observation time	12 hr
Bandwidth	134.1 - 146.7 MHz (redshiftbin 2)
Temporal resolution	2 s
Spectral resolution	195 kHz (1 chan / SB)

university of groningen

Residual image (after source removal)Without ionosphereWith ionosphere

university of groningen faculty of science and engineering

GPR components

groningen

faculty of science and engineering

Example Image

1

1

35

faculty of science and engineering

Post GPR

Foregrounds removed completely

faculty of science and engineering

Variance/error transfer plots

university of groningen faculty of science and engineering Kapteyn Astronomical

Variance/error transfer plots

university of groningen faculty of science and engineering