Cross-correlation of LoTSS DR2 with CMB lensing

Radio galaxy bias and cosmology

Maciej Bilicki Center for Theoretical Physics PAS, Warsaw, Poland

On behalf of: Szymon Nakoneczny (Caltech), David Alonso (Oxford) and the LOFAR Cosmology Team

LOFAR Family Meeting, Olsztyn, 15.06.2023

Disclaimer: work in progress, some results might change before submission

d dxd dxd dxd dxc dxc

Standard cosmological model: ACDM

13.77 billion years

NASA/WMAP Science Team

Cosmological tensions

Hubble constant H₀

Current expansion rate

-HSC-Y3 ξ_{\pm} Weak \cdots DES-Y3 0.90 lensing --- KiDS-1000 --- Planck-2018 S_{∞} 0.00 $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ σ_8 – power spectrum normalisation 0? 0. $\Omega_{\rm m}$

 σ_{8}, S_{8}

Amount of matter fluctuations

arXiv:2304.00702

Secondary gravitational effects in CMB **Cosmic Microwave Background interacts** Table 1. Sources of temperature fluctuations. with foreground large-scale structure

- The integrated Sachs-Wolfe (ISW) effect is due to CMB photons traversing a time-(i) varying linear gravitational potential. The relevant scale is the curvature scale freeze-out in concordance cosmology: the horizon at $1 + z \sim (\Omega_{\Lambda}/\Omega_{\rm m})^{1/3}$. This corresponds to an angular scale of about 10° .
- The Rees-Sciama (RS) effect is due to CMB photons traversing a non-linear (ii) gravitational potential, usually associated with gravitational collapse. The relevant scales are those of galaxy clusters and superclusters, corresponding to angular scales of 5-10 arc minutes.
- Gravitational lensing of the CMB by intervening large-scale structure does not (iii) change the total power in fluctuations, but power is redistributed preferentially towards smaller scales. The effects are significant only below a few arc minutes. Its effects may be significant on large scales when the observable of interest is the B-mode power spectrum.

PRIMARY	Gravity				
	Doppler				
	Density fluctuations				
	Damping				
	Defects	Strings			
		Textures			
SECONDARY	Gravity	Early ISW			
		Late ISW			
		Rees-Sciama			
		Lensing			
	Local reionization	Thermal SZ			
		Kinematic SZ			
	Global reionization	Suppression			
		New Doppler			
		Vishniac			
"TERTIARY"	Extragalactic	Radio point sources			
		IR point sources			
(foregrounds	Galactic	Dust			
&		Free-free			
headaches)		Synchrotron			
	Local	Solar system			
		Atmosphere			
		Noise, etc.			

CMB lensing

Large-scale structure weakly lenses CMB passing through Effect quantified by *lensing convergence* κ

 $T(\hat{\mathbf{n}})_{\text{lensed}} = T(\hat{\mathbf{n}} + \mathbf{d}(\hat{\mathbf{n}}))_{\text{unlensed}}$

Blake Sherwin, https://kicp-workshops.uchicago.edu/FutureSurveys/depot/materials/sherwin.pdf

 $\kappa = \nabla \cdot \mathbf{d}/2$

CMB lensingSky map

Planck 2018, VIII

Integrated effect of the large-scale structure from $z \sim 1000$ till today

Kernel Compared to LSST galaxies

Angular cross-correlation A method to extract LSS information from CMB

Galaxy overdensity

$$\delta_g(\hat{\boldsymbol{n}}) \equiv \frac{N_g(\hat{\boldsymbol{n}}) - \bar{N}_g}{\bar{N}_g}$$
$$\delta_g(\hat{\boldsymbol{n}}) = \int \mathrm{d}z \, \frac{\mathrm{d}p}{\mathrm{d}z} \, \Delta_g(\chi(z)\hat{\boldsymbol{n}}, z),$$

 $\Delta_g = b \Delta_m$

- **b** (linear) galaxy bias parameter
- CMB lensing convergence

$$\kappa(\hat{\boldsymbol{n}}) = \int_0^{\chi_{\text{LSS}}} \mathrm{d}\chi \; \frac{3H_0^2 \Omega_m}{2a} \chi \frac{\chi_{\text{LSS}} - \chi}{\chi_{\text{LSS}}} \Delta_m(\chi \hat{\boldsymbol{n}}, z(\chi))$$

Angular power spectrum

$$C_{\ell}^{uv} = \int \frac{\mathrm{d}\chi}{\chi^2} W_u(\chi) W_v(\chi) P_{UV}\left(k = \frac{\ell + 1/2}{\chi}, z(\chi)\right)$$

P_{UV} - matter power spectrum, dependent on cosmology (e.g. σ_8)

• Kernels

$$W_g(\chi) = \frac{H(z)}{c} \frac{\mathrm{d}p}{\mathrm{d}z},$$

$$W_\kappa(\chi) = f_\ell \frac{3H_0^2 \Omega_m}{2a} \chi \frac{\chi_{\mathrm{LSS}} - \chi}{\chi_{\mathrm{LSS}}} \Theta(\chi_{\mathrm{LSS}} - \chi)$$

Breaking degeneracies thanks to CMB lensing

LoTSS DR1 (Alonso et al. 2021)

Figure 6. Measured auto- and cross-correlation (black dots with error bars int the top and bottom panels respectively), together with the theory prediction for different values of the galaxy bias b_g and the high redshift tail z_{tail} (left and right panels respectively), both in the range (0.5, 2.0). A "constant amplitude" model is assumed for the redshift evolution of the galaxy bias. b_g is fixed to 1.3 in the right panel, while $z_{\text{tail}} = 1.1$ in the left one. While both b_g and z_{tail} affect the amplitude of the auto-correlation, the cross-correlation depends only mildly on the high-redshift tail, making it possible to break the degeneracy between both parameters by combining C_{ℓ}^{gg} and $C_{\ell}^{g\kappa}$.

Varying redshift distribution

LOTSS DR2

- LOFAR Two-metre Sky Survey (LoTSS) Data Release 2
- 27% of the northern sky
- 4.4 million radio sources before cuts
- Our selections (motivated by Hale et al. in prep.): \rightarrow peak flux over 1.5 mJy \rightarrow signal to noise over 7.5 \rightarrow fiducial sample of 1.1 million objects

Shimwell et al. 2022

Weights from Hale et al. in prep. Used to rescale number counts and to generate the mask

galaxy bias model +redshift distribution model +nuisance parameters (e.g. shot noise amplitude) additionally σ_8]

Tools

- NaMaster (Alonso) power spectra from observational data (so-called pseudo C_ell, based on Master by Hivon et al. 2002)
- Core Cosmological Library (CCL, Chisari, Alonso, Krause et al. 2019) theoretical modelling of correlations, including Halofit and linear matter power spectrum
- emcee, Cobaya (Torrado, Lewis 2020) Monte Carlo Markov Chains and likelihood inference
 - Likelihood

 $\chi^2 \equiv -2\log p(\boldsymbol{d}|\boldsymbol{q}) = (\boldsymbol{d} - \boldsymbol{t}(\boldsymbol{q}))^T \operatorname{Cov}^{-1}(\boldsymbol{d} - \boldsymbol{t}(\boldsymbol{q})),$

• Significance

 $TS = \chi^2(0) - \chi^2_{min} ,$ sigma = sqrt(TS) **d** – data vector including power spectra and redshift distribution

- **t** theoretical prediction
- **q** model parameters

LoTSS DR2 redshift distribution

$$\delta_g(\hat{\boldsymbol{n}}) = \int \mathrm{d}z \, \frac{\mathrm{d}p}{\mathrm{d}z} \, \Delta_g(\chi(z)\hat{\boldsymbol{n}}, z), \quad \Delta_g = b \, \Delta_m$$

- Shaded: variation from LoTSS Deep Fields (e.g. Duncan et al. 2021)
- Parametrisation:

$$p(z) \propto \frac{z^2}{1+z} \left(\exp\left(\frac{-z}{z_0}\right) + \frac{r^2}{(1+z)^a} \right)$$

models SFGs at low-z and AGNs at high-z

Bias modelling of LoTSS galaxies

$$\delta_g(\hat{\boldsymbol{n}}) = \int \mathrm{d}z \, \frac{\mathrm{d}p}{\mathrm{d}z} \, \Delta_g(\chi(z)\hat{\boldsymbol{n}}, z), \quad \Delta_g = b \, \Delta_m$$

- Three LoTSS DR2 galaxy bias models:
 - Constant (redshift-independen
 - "Constant-amplitude" where D(z) is the LSS linear of
 - Quadratic model (empirical)
- Parameters fitted within MCMC

$$b_g(z) = b_g$$

$$b_g(z) = b_{g,D}/D(z)$$

growth factor

$$b_g(z) = b_0 + b_1 z + b_2 z^2$$

Correlations

Linear vs. Halofit modelling of matter power spectrum

Various multipole ranges tested

Nakoneczny et al. in prep.

Detection at $\sim 23\sigma$ for ell<500 Factor of ~3.6x higher than in LoTSS DR1 (Alonso et al. 2021)

Constraining LoTSS galaxy bias

Constant-amplitude and quadratic models fit the combined C_{qq} & $C_{q\kappa}$ better than constant bias

		$b_g(z) = b$	g		b	$b_g(z) = b_{g,D}/$	D(z)	
	b_g	A_{sn}	χ^2	PTE	$b_{g,D}$	A_{sn}	χ^2	PTE
C_ℓ^{gg}	$1.80\substack{+0.08\\-0.10}$	$0.98^{+0.09}_{-0.06}$	3.9	41%	$1.49^{+0.06}_{-0.09}$	$0.98^{+0.09}_{-0.05}$	4.0	41%
$C_\ell^{g\kappa}$	$2.17\substack{+0.09 \\ -0.09}$		9.5	39%	$1.39^{+0.06}_{-0.06}$		9.3	41%
C_ℓ^{gg} & $C_\ell^{g\kappa}$	$1.91\substack{+0.05 \\ -0.05}$	$0.93^{+0.04}_{-0.02}$	22.3	5.1%	$1.41^{+0.06}_{-0.06}$	$1.05\substack{+0.07 \\ -0.07}$	14.8	32%

Nakoneczny et al. in prep.

1	
H	

Cosmology constrains

Currently varying only σ_8 , other parameters fixed to Planck

LoTSS DR1

LoTSS DR2 2.0mJy, 5.0 SNR

LoTSS DR2 1.5mJy, 7.5 SNR

Best fit for flux>1.5 mJy & SNR>7.5:

 $\sigma_8 = 0.75 \pm 0.04$

Sample	σ_8	$b_{g,D}$	A_{sn}	χ^2	PTE
(1.5 mJy, SNR > 7.5)	$0.75^{+0.04}_{-0.04}$	$1.64^{+0.16}_{-0.17}$	$0.98^{+0.09}_{-0.08}$	12.4	50%
(2 mJy, SNR > 5)	$0.80^{+0.07}_{-0.06}$	$1.42^{+0.21}_{-0.21}$	$1.18\substack{+0.09\\-0.09}$	13.6	40%

Nakoneczny et al. in prep.

Conclusions

- High-significance detection of LoTSS DR2 x CMB lensing cross-correlation
- Bias model constraints, constant model not a good fit
- Underlying redshift distribution is an important ingredient
- Derived σ_8 currently agrees with both Planck and cosmic shear surveys
- Final results with full-sky LoTSS should provide an important test of state-of-theart cosmological constraints