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Standard cosmological model: ACDM
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Secondary gravitational effects in CMB

Cosmic Microwave Background interacts
with foreground large-scale structure

(1)

(ii)

(1i1)

The integrated Sachs-Wolfe (ISW) effect is due to CMB photons traversing a time-
The relevant scale 1s the curvature scale
This

arving linear gravitational potential.
freeze-out in concordance cosmology: the horizon at 1 + 2z ~ (2,/ Qm)” 3,
corresponds to an angular scale of about 10°.

The Rees-Sciama (RS) effect is due to CMB photons traversing a non-linear
gravitational potential, usually associated with gravitational collapse. The relevant
scales are those of galaxy clusters and superclusters, corresponding to angular scales
of 5-10 arc minutes.

Gravitational lensing of the CMB by intervening large-scale structure does not
change the total power in fluctuations, but power is redistributed preferentially
towards smaller scales. The effects are significant only below a few arc minutes.
Its effects may be significant on large scales when the observable of interest is the

B-mode power spectrum.

Table 1. Sources of temperature fluctuations.
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CMB lensing

Large-scale structure weakly lenses CMB passing through

Effect quantified by lensing convergence k
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Blake Sherwin, https://kicp-workshops.uchicago.edu/FutureSurveys/depot/materials/sherwin.pdf



CMB lensing
Sky map

Kernel
Compared to LSST galaxies
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Angular cross-correlation

A method to extract LSS information from CMB

* Galaxy overdensity * Angular power spectrum
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Breaking degeneracies
thanks to CMB lensing

LOTSS DR1 (Alonso et al. 2021)
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Figure 6. Measured auto- and cross-correlation (black dots with error bars int the top and bottom panels respectively), together with
the theory prediction for different values of the galaxy bias by and the high redshift tail z;,; (left and right panels respectively), both in
the range (0.5,2.0). A “constant amplitude” model is assumed for the redshift evolution of the galaxy bias. by is fixed to 1.3 in the right
panel, while z;,;) = 1.1 in the left one. While both b; and z,; affect the amplitude of the auto-correlation, the cross-correlation depends
only mildly on the high-redshift tail, making it possible to break the degeneracy between both parameters by combining C}¢ and C}".
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LoTSS DR2

LOFAR Two-metre Sky Survey
(LOTSS) Data Release 2

2 7% of the northern sky

4.4 million radio sources
before cuts

0.04 mjy/beam 0.15

Our selections

(motivated by Hale et al. in prep.): Shimwell et al. 2022
- peak flux over 1.5 mjy

— signhal to noise over 7.5

- fiducial sample of 1.1 million objects
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. . Nakoneczny et al. in prep.
Weights from Hale et al. in prep. Y Prep

Used to rescale number counts and to generate the mask



Methodology

galaxy autocorrelation

Cyg galaxy bias model
T assuming Planck n
galaxy-CMB lensing cosmology Y
cross-correlation — = redshift distribution model
Cox linear or Halofit N
matter power
+ Spectrum nuisance parameters
dN/dz (e.g. shot noise amplitude)
(deep fields) [+

additionally os]



Tools

* NaMaster (Alonso) - power spectra from observational data
(so-called pseudo C ell, based on Master by Hivon et al. 2002)

®* Core Cosmological Library (CCL, Chisari, Alonso, Krause et al. 2019) - theoretical
modelling of correlations, including Halofit and linear matter power spectrum

* emcee, Cobaya (Torrado, Lewis 2020) - Monte Carlo Markov Chains and likelihood
Inference
d - data vector including power spectra and

redshift distribution
t - theoretical prediction
* Significance g - model parameters

TS = XE(U) N Xlznin ;

sigma = sqrt(TS)

* Likelihood
x> = —2log p(d|q) = (d — t(q))" Cov™'(d — t(q)),


https://namaster.readthedocs.io/en/latest/
https://github.com/LSSTDESC/CCL
https://arxiv.org/abs/1812.05995
https://emcee.readthedocs.io/en/stable/
https://cobaya.readthedocs.io/en/latest/
https://arxiv.org/abs/2005.05290

LoTSS DR2 redshift distribution

d
bg(n) = /dz i A;(x(@n,z), Dy = b An

dz
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Bias modelling of LOTSS galaxies

d
bg(n) = /dz f A;(x(@n,z), Dy = b An

* Three LOoTSS DR2 galaxy bias models:
- Constant (redshift-independent) b,(z) = b,

- “Constant-amplitude” bo(z) = b, p/D(2)
where D(z) Is the LSS linear growth factor

- Quadratic model (empirical) bo(2) = by + b1z + ba7”

* Parameters fitted within MCMC



Correlations

Linear vs. Halofit modelling of matter power spectrum
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Constraining

LoTSS galaxy bias

Constant-amplitude and quadratic models

fit the combined Cyy & Cyx

—— bg{f} = IIJD T IIJ]_.E + IIJEEE

bg(2) = bga/D(2)

median redshift

Nusser & Tiwari 2015

Hale+ 2018
Chakraborty+ 2020

Mazumder+ 2022
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Cosmology constrains
Currently varying only os, other parameters fixed to Planck
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Nakoneczny et al. in prep.




Conclusions

* High-significance detection of LoTSS DR2 x CMB lensing cross-correlation
* Bias model constraints, constant model not a good fit

* Underlying redshift distribution is an important ingredient

* Derived os currently agrees with both Planck and cosmic shear surveys

* Final results with full-sky LoTSS should provide an important test of state-of-the-

art cosmological constraints
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