# LoTSS DR2 cross correlating with eBOSS

Jinglan Zheng Postdoc at Universität Bielefeld jzheng@physik.uni-bielefeld.de

LOFAR family meeting 2023

## Outline

- The background of BAO
- why and how to calculate angular power spectrum
- the results of BAO and bias constraints

## Cosmology: Theory



## Cosmology: Theory



(perturbation)

4

(background)

## Baryon Acoustic Oscillation(BAO)



- Oscillations in photon-baryon fluid: pressure vs gravitational instability
- sound wave propagates until decoupling of matter and radiation
- maximum wavelength is horizon scale at decoupling
- "the standard ruler" of the universe

## Baryon Acoustic Oscillation(BAO)



#### correlation function



http://apod.nasa.gov/apod/ap140120.html

## Baryon Acoustic Oscillation(BAO)



#### power spectrum



Neyrinck et al 2008

## introduction

#### **Optical survey:**

#### Radio continuum surveys:





Credit: sdss.org

## LoTSS(LOFAR Two-metre Sky Survey)

- Continuum map
- LoTSS will be the deepest radio continuum survey at low radio frequencies for the next decades
- will cover the complete Nothern sky, its high angular allows to identify multiwavelength counterparts for which photometric redshifts are obtained
- WEAVE-LOFAR will obtain a million of spectroscopic redshifts for LoTSS selected radio sources



Credit: www.astron.nl

## eBOSS: luminous red galaxies





-1



• LoTSS DR2 cross correlates with eBOSS (Zheng et al, to be submitted to A&A)

#### the trimming of the catalogue:

- 1.5 mjy flux cut and 7.5 SNR for LoTSS
- binning using redshift,  $\triangle z = 0.06$  for eBOSS

|       | N <sub>tot</sub> | N <sub>cut</sub> |                                                      |
|-------|------------------|------------------|------------------------------------------------------|
| eBOSS | 107500           | 16559(15.4%)     | the first redshift bin 0.6 <z<0.66< td=""></z<0.66<> |
| LoTSS | 4395448          | 2111178(48.0%)   |                                                      |

## Formulas of angular power spectrum

theory

$$egin{aligned} \Delta(\hat{m{r}}) &= \int_0^\infty \delta_g(m{r}, z(r)) p(r) dr \ &= \int_0^\infty \delta_m(m{r}, z=0) D(z) b(z) p(r) dr \end{aligned}$$

marginalize bias to get BAO  $C_{\rm obs,z_i}(\ell) = B_{z_i}(\ell)C_{\rm m.z_i}(\ell/\alpha) + A_{z_i}(\ell)$  $B \rightarrow B/\alpha^2$  measurement

$$C_l^{\rm obs} = \frac{\langle |a_{lm}'|^2 \rangle}{J_{lm}} - \frac{1}{\bar{\mathcal{N}}}$$

## Formulas of angular power spectrum

theory

measurement

$$egin{aligned} \Delta(\hat{m{r}}) = \int_0^\infty \delta_g(m{r}, z(r)) p(r) dr \ = \int_0^\infty \delta_m(m{r}, z=0) D(z) b(z) p(r) dr \end{aligned}$$

$$\begin{split} C_{\ell} &= <|a_{\ell m}|^2 > \quad \text{fix BAO to get bias} \\ &= \frac{2}{\pi} \int dk k^2 P(k) \left| \int_0^\infty dr D(z) p(r) j_{\ell}(kr) \right|^2 \\ &= \frac{2}{\pi} \int dk k^2 P(k) W^2(k) \;, \end{split}$$

$$C_l^{
m obs} = rac{\langle |a_{lm}'|^2 
angle}{J_{lm}} - rac{1}{ar{\mathcal{N}}}$$

#### pipeline

| pipeline             |                           | $C_{\mathrm{obs,z_i}}(\ell) = B_{{m z}_i}(\ell) C_{\mathrm{m,z_i}}(\ell/lpha) + A_{{m z}_i}(\ell)$ |
|----------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| sim: FLASK           | data: LoTSS DR2 and eBOSS | theory: Seo et al, 2012, ApJ, 761, 13                                                              |
|                      | ra, dec                   | input for projection                                                                               |
| get covariance of Cl | healpy and astropy        | b(z) n(z)                                                                                          |
|                      | mask map                  | pyccl                                                                                              |
| pipeline validation  | pymaster                  | linear galaxy Cl survey<br>geometry bandpower                                                      |
|                      | angular power spectrum Cl | marginalize broadband shape                                                                        |

- 1, How to choose b(z) and n(z)?
- eBOSS LoTSS
- b(z): 1.7/D(z) or from EZmock b(z): DR1 best fit
- n(z): directly from catalogue

n(z): T-RECS or Deep-Fields

## b(z) of LoTSS: LoTSS DR1



 $b(z) = 0.36z^2 + 1.23z + 2.21$ 

## n(z) of LoTSS: from deep Fields DR1 or from simulation(T-RECS, Bonaldi et al.)



b(z) of eBOSS: from EZmock



### 2, Mock test: eboss auto z=0.6-1, $\triangle$ z=0.06



## Mock test: cross (lotss x eboss)



21

#### covariance mattrix

**Covariance Matrices** 



## 3, measurements: eboss auto



## measurements: cross angular power spectrum in different redshift binnings



8.9 sigma detection of one single redshift bin

## Measurements vs theory: all redshift bins



15.7 sigma detection of cross correlation

## 4, BAO fitting using one redshift bin

fitting alpha =  $1.05 \pm 0.3$  $\alpha = \ell_{\rm obs}/\ell_{\rm fid} = [D_A(z)/r_s]_{\rm obs}/[D_A(z)/r_s]_{\rm fid}$ to fit the shifting of the "wiggles" in the power spectrum cl/cl nw-1 0.00 fitting input theory bp16 irgonly red[0.6,0.65] 0.8 2,2 2. 0.9 0.0 0.8 2.0 ~.0 -2 0.0 0.0 -3 ,0,0 0° 0° 1° 1° 1° 1° 0° 0° 0° 0° 0° 1° 1° 0° 0° 1° 1° 100 200 300 400 500 600 700 800 1e-6

### The improvements compared with eBOSS alone



27

## 5, redshift estimation(left) and bias(right) estimation for LoTSS



• Output: redshift estimation and bias estimation for LoTSS



Due to low galaxy number density at higher redshift

## Conclusion and summary

- We use LoTSS DR2 and eBOSS LRGs, calculate auto and cross angular power spectrum, and obtain Baryon Acoustics Oscillaition constraints
- We obtain for the first time a slight BAO signal using cross-correlation alone and an achieve an improvement combining the auto correlation, proving that there is BAO signal in the LoTSS radio catalogue
- We are also able to constrain LoTSS DR2 bias and redshift distribution with cross-correlation

Future:

 WEAVE-LOFAR get spectra-z we will have 3D power spectrum of continuum radio sources!

## Thank you!