The LOFAR Faraday Rotation Measure Grid

Shane O'Sullivan

15 June 2023

Universidad Complutense de Madrid s.p.osullivan@ucm.es

LOFAR Surveys & Magnetism Key Science Projects https://lofar-surveys.org/, https://lofar-mksp.org/

O'Sullivan+23

LOFAR Family Meeting 2023, Olsztyn

Cosmic magnetic fields

Planets, stars, galaxies, galaxy clusters Magnetic field properties known What is the origin of cosmic magnetism? Key science goal for the SKA Log B (G) Did 'seed fields' originate in the very early Universe (i.e. primordial)? Then amplified during structure formation Astrophysical mechanisms at later times Pollute intergalactic space through outflows (galactic & AGN) Magnetic field strength (a) z = 0Magnetic field strength (a) z = 0

LOEAR MAGNETISM Key Science Project

GUĂIX

- The construction of a wide-area "RM Grid" is a key science goal for the study of cosmic magnetism with the SKA
 - ie. a catalog of discrete radio sources with Faraday rotation measures (RMs)
 - Synchrotron emission from radio galaxies → Faraday rotation and depolarization due to cosmic magnetic fields
- □ The importance of RM studies at metre-wavelengths
 - LOFAR Two-Metre Sky Survey: 6" @ 144 MHz
 - $RM_{err} \le 0.1 rad/m^2$
 - High precision RM values $(\Delta \lambda^2_{LoTSS} / \Delta \lambda^2_{cm} \sim 100)$
 - Unique probe of weakly magnetised, low density environments
 - Radio galaxy & blazar physics, group/cluster environments, intergalactic magnetic fields, Milky Way magnetism, pulsars

Different expected distribution of magnetic fields on the largest scales

Primordia

Linear polarization & Faraday rotation

GUĂI

MAGNETISM

What is the expected value of the Faraday Rotation Measure (RM)?

$$\mathrm{RM}_{[\mathrm{rad m}^{-2}]} = 0.812 \int_0^L n_{e \ [\mathrm{cm}^{-3}]} B_{|| \ [\mu\mathrm{G}]} \ dl \ [\mathrm{pc}]$$

- e.g. Cosmic web filament overdensity of ~50: ~10⁻⁵ cm⁻³ using a path length of 1 Mpc and a magnetic field strength of 100 nG = ~1 rad/m²
- □ 1 rad/m² rotates the linear polarization angle by ~2° at cm-wavelengths, but **200° at metre-wavelengths**
 - Easier to measure this effect at long (metre) wavelengths
 - Higher RM precision (~100x): $\leq 0.1 \text{ rad/m}^2$
 - Use the Low Frequency Array (LOFAR)

GUĂIX

- \sim 4.4 million sources (Shimwell et al. 2022)

120 – 168 MHz, 20" QU cubes

- DR2: 0h and 13h fields, 5720 deg^2 LOFAR-LBA-MSSS LOFAR-HBA-MSSS 10^{1} Sensitivity (mJy/beam)

LOFAR Two-metre Sky Survey (LoTSS)

VLSSr

GLEAM WENSS

 10^{2}

GUĂIX

Comunidad de Madrid

6 arcsec

25 arcsec

LOFAR polarized sources

MADRID

GUĂIX

□ Linearly polarised sources rare at low frequencies due to depolarization

- wavelength-independent depolarization (vector-average over source)
 - Excellent angular resolution of LOFAR helps mitigate this (6", 0.3")
- Faraday dispersion (wavelength-dependent depolarization)

$$\mathbf{P} = p_0 e^{2i(\chi_0 + \mathrm{RM}\,\lambda^2)} e^{-2\sigma_{\mathrm{RM}}^2\lambda^4}$$

- Require very small variations in RM across the extent of emission region within the synthesized beam
 - Low gas density environments
 - Compact emission region
- High angular resolution helps resolve large fluctuations in Faraday screen

LOFAR depolarization

Stuardi, et al. (2020), A&A, 638, 48. arXiv:2004.05169

GUĂIX

- □ Sample of 240 GRGs (Dabhade+20): 37 sources polarized
- □ Comparison of degree of polarization at 1.4 GHz (NVSS) and 144 MHz is consistent with a small amount of Faraday depolarization ($\sigma_{RM} < 0.3 \text{ rad/m}^2$)
- □ Consistent with low-density ($<10^{-5}$ cm⁻³) local environment, with weak magnetic fields ($< 0.1 \mu$ G) with fluctuations on scales of 3 to 25 kpc

RM Grid example source

LoTSS DR2 RM Grid results

- □ 2,461 polarized sources in 5720 deg⁻² sky area
 - 1 pol source per 2.3 deg⁻²
 - Van Eck+19: 1 per 6.2 deg⁻² (4.3', 570 sq deg)
 - Mulcahy+14, Neld+18: 1 per 3.3 deg⁻² (20", single field)
 - Herrera Ruiz+20: 1 per 1.6 deg⁻² (20", 6 single fields)
- Optical IDs and redshifts
 - Internal LOFAR Galaxy Zoo effort: Host galaxy ID for ~88% of sources!
 - Phot-z for 75% of ID'd sources
 - Spec-z for ~40% from literature
 - Redshift estimate for 75% of the sample: median z of 0.6
 - Median linear size of ~400 kpc
 - Median luminosity of $\sim 5 \ge 10^{26} \text{ W/Hz}$
 - 172 known blazars (~7%)

25 pulsars, with new discoveries (Sobey+22)

LoTSS DR2 RM Grid results

15

O'Sullivan, et al. (2023), MNRAS, 519 5723, arXiv:2301.07697

LoTSS DR2 RM Grid results

O'Sullivan, et al. (2023), MNRAS, 519 5723, arXiv:2301.07697

□ NVSS RM comparison

- 37% overlap → 1,551 unique RMs
- 90% agree within 3σ
- Absence of Faraday complex sources: ideal RM Grid
- 14 sources in common with Adebahr+22
 - Apertif SVC, 56 deg²
 - Only 3 discrepant RMs
 - Two from the opposite lobe of the same source, while the other is a BL Lac
- MWA-POGS RMs consistent
 - but 5 extra polarized sources in overlap region not found by LoTSS

O'Sullivan, et al. (2023), MNRAS, 519 5723, arXiv:2301.07697

- Higher %p for larger size, indicative of lower depolarization further from host galaxy halo/local environment
- □ Median p:
 - 0.9% at 100 kpc, 2.4% at 1 Mpc

Morphology of LoTSS RM Grid sources

- LoMorph (Mingo+19)
 - Automated morphological classification
 - <u>https://github.com/bmingo/LoMorph</u>
- Preliminary analysis for RM Grid sources
 - FRII (~40%), FRI (~20%), hybrid (~15%)
 - $\sim 2x$ more FRII than FRI, in contrast to general population of bright sources where \sim 2 to 3x more FRI than FRII
 - Small & unresolved sources ($\sim 25\%$)
 - Wealth of additional information
 - Integrated flux, deconvolved linear size, core-hotspot distances & angles, further classifications of "small" into FRI/II/ hybrid

Polarization at 6"

- Several radio galaxies show extended diffuse polarization structure
 - □ FRII, FRI and double-doubles
 - Special conditions (intrinsic?, environment?)
- Raw QU LoTSS images not deconvolved
- Need LoTSS uv-data to re-image and clean in Stokes Q and U at 6"
 - Polarization also now detected at 0.3" (cf. Reinout's talk)

Total Intensity

Polarized Intensity

Next frontier: LOFAR2.0

□ LOFAR2.0: a series of upgrades to enhance LOFAR capabilities (2025+)

GUĂIX

20

- eg. co-observing with HBA+LBA, full sensitivity of LBA array, routine 0.3" imaging, etc.
- ILoTSS: Proposing to cover 7,000 sq deg at 0.3" to 30 uJy/beam at 150 MHz
- Matched resolution imaging with EUCLID (optical to NIR, launch 2023)
- Much greater fraction of polarized sources? Overcoming Faraday and beam depolarization

The magnetised cosmic web with LOFAR

O'Sullivan et al. (2019)

Carretti, Vacca, O'Sullivan, et al. (2022), MNRAS, 512, 945. arXiv:2202.04607 (Paper I)

- (R)RM vs z analysis for 1003 RMs at z < 2
- Comparison with the number of cosmic filaments identified from optical galaxy surveys along each line of sight
 - Chen+15, Carron-Duque+21
- RRM_{0,rms} expected to increase with redshift as N_f^{1/2} (Akahori & Ryu 2011)

 $\text{RRM}_0(z) = \text{RRM}_{0,f} \ N_f^{1/2}(z) + A_{\text{RRM}}$

■ Best-fit result gives: $\text{RRM}_{0,f} = 0.71 \pm 0.07 \text{ rad m}^{-2}$

Characteristic |RM| of an individual filament

Assuming typical $n_{e,f} \sim 10^{-5} \text{ cm}^{-3}$ and mean path length through a filament $L_f \sim 3 \text{ Mpc}$ (Cautun+14)

=> average *B_f* ∼ 30 nG

Or ~ 10 to 50 nG at z = 0 depending on density model

LoTSS DR2: Magnetised CGM of nearby galaxies

 Residual RM vs impact parameter for 183 nearby galaxies (D_{median} ~ 18 Mpc)

Heesen, O'Sullivan, Brüggen, et al. (2023), A&A, 670, 23. arXiv:2302.06617

- Excess RM signal at < 100 kpc, only for galaxies with high inclination angle, and sightlines close to minor axis
 - **RM** excess of $\sim 3.7 \pm 0.9 \text{ rad/m}^2 (\sim 4\sigma)$
 - Leads to ~0.5 μ G for n_e ~ 10⁻⁴ cm⁻³ at ~50 kpc, β ~ 1 (for hot CGM)
 - Dependence on the azimuthal angle also seen in MgII absorption eg. Bouché+12
 - Median $M_* \sim 10^9 M_{sol}$
 - Consistent with bipolar winds in simulations of massive galaxies
- Slow decrease in B(r), expected if CGM magnetised by winds and outflows
 - As seen in simulations eg. Pakmor+20

Scan the QR code to download the RM Grid data and the description paper

s.p.osullivan@ucm.es

- □ LoTSS DR2 RM Grid: O'Sullivan et al. (2023), arXiv:2301.07697
 - 2,461 RMs from extragalactic radio sources (i.e. radio-loud AGN)
 - Only $\sim 0.2\%$ of bright sources are detected in polarization at 20"
 - Unrivalled RM precision ($\sim 0.05 \text{ rad/m}^2$) & redshifts for $\sim 79\%$ of sources
- □ LoTSS residual RM associated with cosmic web filaments
 - Consistent with magnetised WHIM, with $B \sim 10 50 \text{ nG} (z \sim 0)$
 - Carretti et al. (2022a,b), arXiv:2202.04607, arXiv:2210.06220
- **RM** signal associated with magnetised CGM in nearby galaxies
 - consistent with magnetised outflows up to 100 kpc along minor axis
- □ Larger datasets in the near future
 - □ Metre-wavelengths: Full LoTSS RM Grid at 6" (4x area, ~3x resolution)
 - LOFAR2.0: ILoTSS RM Grid at 0.3"
 - Complemented by cm-wavelengths: VLASS, APERTIF (LoTSS overlap) ASKAP-POSSUM & MeerKAT (southern sky)

