Why a cluster deep field?

Andrea BOTTEON

INAF – IRA

In collaboration with the LOFAR Galaxy Clusters Working Group and Surveys KSP

June 13, 2023 – LOFAR Family Meeting, Olsztyn

Clusters and cluster outskirts

Deep radio observations can be used to study how *shocks* and *turbulent motions* dissipate kinetic energy into non-thermal components in extreme cluster outskirts, over the *entire* cluster volume

The Galaxy Cluster Deep Field

ASTRONOMY

ScienceAdvances

Magnetic fields and relativistic electrons fill entire galaxy cluster

Andrea Botteon^{1,2,3}*, Reinout J. van Weeren¹, Gianfranco Brunetti³, Franco Vazza^{2,3}, Timothy W. Shimwell^{1,4}, Marcus Brüggen⁵, Huub J. A. Röttgering¹, Francesco de Gasperin^{3,5}, Hiroki Akamatsu⁶, Annalisa Bonafede^{2,3}, Rossella Cassano³, Virginia Cuciti^{3,5}, Daniele Dallacasa^{2,3}, Gabriella Di Gennaro⁵, Fabio Gastaldello⁷

Abell 2255

(Jaffe+Rudnick79, Feretti+97, Govoni+05,06, Pizzo+08,09,11, Botteon+20,22)

Z	0.0806
Right ascension (h, m, s)	17 12 31
Declination (°, ', ")	+64 05 33
$M_{500}~(10^{14}~{ m M}_{\odot})$	5.38 ± 0.06
$L_{500} (10^{44} \text{ erg s}^{-1})$	2.08 ± 0.02
K_0 (kev cm ²)	529 ± 28
kT_{vir} (keV)	5.8 ± 0.2
$P_{1.4} (10^{23} \text{ W Hz}^{-1})$	9.0 ± 0.5
Scale (kpc arcsec ⁻¹)	1.512

LoTSS (Botteon+2020): 8h HBA 120-168 MHz

Deep Field (Botteon+2022): 72h HBA 120-168 MHz 72h LBA 22-70 MHz

Ultra-Deep Field (202..): 336h HBA 120-168 MHz

Implications:

- \rightarrow distribution of **B** and **CRe**
- \rightarrow *amplification* of **B** in the outskirts
- \rightarrow dissipation of *turbulence* in NT components
- \rightarrow distribution of *shocks* and *turbulence* in the ICM

At ~2 Mpc:

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha} (1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}}$$

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu G$$

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}}$$

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}} \rightarrow B \sim 0.1-1.7 \ \mu G$$

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}} \rightarrow B \sim 0.1-1.7 \ \mu G$$

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}} \rightarrow B \sim 0.1-1.7 \ \mu G$$

 \rightarrow **250**^x than UL on B_{cmb}

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}} \rightarrow B \sim 0.1-1.7 \ \mu G$$

 \rightarrow **250**^x than UL on B_{cmb}

 \rightarrow 10x than strength expected from simple *compression* of B_{cmb}

At ~2 Mpc:

• The magnetic field yielding to the minimum energy of the relativistic plasma is:

$$B_{min} = \left(C_{\alpha} \frac{L_{syn}(\nu)}{V} \nu^{\alpha}(1+k)\right)^{\frac{1}{3+\alpha}} \gamma_{min}^{\frac{1-2\alpha}{3+\alpha}} \rightarrow B_{min} \sim 0.45 \ \mu C$$

• Assuming *departure from equilibrium* $B = B_{min}\Delta$ the following condition must be satisfied:

$$\epsilon_{B+e} \lesssim \epsilon_{ICM} 0.05 \frac{\Delta^{-2} + \frac{2\Delta^{1+\alpha}}{1+\alpha}}{\frac{3+\alpha}{1+\alpha}} \rightarrow B \sim 0.1\text{-}1.7 \ \mu\text{G}$$

 \rightarrow **250**^x than UL on B_{cmb}

 \rightarrow 10x than strength expected from simple compression of B_{cmb}

Magnetic field in *cluster outskirts* must be **efficiently** amplified (role of *dynamo*)

Dissipation of *turbulent energy flux* into non-thermal components (B+e)

 $F \sim \frac{1}{2} \rho \frac{\sigma_v^3}{\Lambda}$

ρ = density σ = turb rms velocity Λ = scale

Dissipation of turbulent energy flux into non-thermal components (B+e)

solenoidal

3.0

 $\eta_{\rm B}$

 10^{-1}

 10^{0}

 10^{-2}

 10°

$$\eta_{acc}(\eta_B) \sim \frac{L_{syn,bol}}{FV} \left[1 + \frac{B_{cmb}^2}{8\pi F \tau_{eddy} \eta_B} \right]$$

To reproduce the *envelope* of radio emission in A2255 it is required that 5-10% of F_{turb} is channeled into *NT components*

LOFAR LBA (49 MHz)

Overlapping structures

Overlapping structures

Overlapping structures

The structures with *filamentary* morphology have *flatter* spectra and are polarized at 1.4 GHz

Consistent with the fact that we are observing **relic-like** emission *projected* onto the cluster center

Follow-up studies

Ram pressure stripping

Ignesti+23

7 radio selected *RPS galaxies* (6 within r₅₀₀ + 1 close to r₂₀₀)

Deep LOFAR HBA+uGMRT band 3 data → flux density and spectral index profiles along the tails

Constraints on the projected *radio plasma velocity* along the tails (100-500 km/s)

Broad band spectral index analysis

Broad band spectral index analysis

Spectral index study of the *extended radio galaxies* in the cluster → re-acceleration processes in the tails?

Long baseline imaging

De Rubeis+ in prep.

Bright and extended AGN can be imaged with LOFAR long baselines

No preview available, attend the talk of E. De Rubeis!

What is the origin of the **filaments** in the radio emission and what do they tell us about *AGN/ICM physics*?

Other possible projects:

- Imaging LBA data <30 MHz (see Groeneveld talk)
- RM synthesis

• .

Ultra-deep field & LOFAR2.0

LOFAR 336h HBA observations completed in May 2023

Credit: M. Bondi

- Does the envelope show *boundaries*?
- Can we detect the synchrotron *cosmic web*?
- Wide field imaging with long baselines

LOFAR2.0:

- EoI submitted
- Synergy with LUDO (see P. Best talk)
- Observations with LLoCuSS (130 µJy/beam @ 40 MHz)

Conclusions

- Abell 2255 is the LOFAR Cluster Deep Field
- Giant envelope of emission embedding the known emission
- A number of *filamentary* structures are detected
- Implications on *acceleration mechanisms* on very large scales
- The large dataset triggered *different* follow-ups
- The processing of the 336h LOFAR1.0 (HBA) is ongoing
- Looking forward to LOFAR2.0

Conclusions

- Abell 2255 is the LOFAR Cluster Deep Field
- Giant envelope of emission embedding the known emission
- A number of *filamentary* structures are detected
- Implications on *acceleration mechanisms* on very large scales
- The large dataset triggered *different* follow-ups
- The processing of the **336h** LOFAR1.0 (HBA) is ongoing
- Looking forward to LOFAR2.0

Extra slides

