Studies of ionospheric radio wave scintillation by using LOFAR observations

B. Forte(1), P. Flisek(2), K. Kotulak(2), M. Mevius(3),
K. Beser(3), A. Krankowski(2), R. Fallows(4), and M. M. Bisi(4),

(1) Department of Electronic and Electrical Engineering, University of Bath, United Kingdom
(2) Space Radio-Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, Poland
(3) ASTRON – the Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands
(4) RAL Space, Science & Technology Facilities Council (STFC), United Kingdom Research and Innovation (UKRI), Rutherford Appleton Laboratory (RAL), UK

b.forte@bath.ac.uk
Motivation

The radio wave scintillation mechanism

LOFAR scintillation observations

Examples

Conclusions
Motivation

The radio wave scintillation mechanism
LOFAR scintillation observations
Examples
Conclusions
Ionospheric irregularities and their effects on radio waves

- Irregularities forming in the ionosphere due to instability mechanisms
- Temporal fluctuations on received phase and intensity
- Outages in systems (e.g., satellite navigation)
- Use of LOFAR to detect ionospheric irregularities forming over various spatial scales and their effects on radio-wave propagation
- Increase understanding of the ionosphere
Motivation

The radio wave scintillation mechanism

LOFAR scintillation observations

Examples

Conclusions
The propagation problem

Credit: Forte et al., ApJS, 2022
Radio wave scintillation observed through LOFAR radio telescopes

Scintillation from plasma tail of Comet Neowise (3C196 utilised as a source)

16 July 2020

Credit: Fallows et al., A&A, 2022
Motivation

The radio wave scintillation mechanism

LOFAR scintillation observations

Examples

Conclusions
Radio wave scintillation observed through LOFAR radio telescopes

23 September 2018 17:01 UT - 24 September 2018 05:46 UT

Source: CasA

Credit: Forte et al., ApJS, 2022
Methods of analysis

Credit: Forte et al., ApJS, 2022
LOFAR VHF Zero-Mean Normalised Intensity Fluctuations

- Different time intervals are sensitive to different spatial scales.
- In the weak scattering approximation, the Fresnel scale of the irregularities is of the order of approximately 1800-3200 m.
- The relative drift velocity of irregularities implies averaging over different spatial scales.
- The intensity fluctuations are not ergodic.

Credit: Flisek et al., under review
Motivation

The radio wave scintillation mechanism

LOFAR scintillation observations

Examples

Conclusions
Example: DOY271 2017

LOFAR S_4 scintillation index estimated over various VHF radio-wave frequencies

Credit: Flisek et al., under review
Example: DOY271 2017

GNSS Rate of Change of Total Electron Content (ROT) over 60 s (or 1 minute) temporal intervals

Credit: Flisek et al., under review
A: Enhancement in LOFAR VHF scintillation and in GNSS ROT
B: Enhancement in LOFAR VHF scintillation and not in GNSS ROT

Altitude

F region
≈ 120 – 500 km

E region
≈ 100 – 120 km

Drift velocity

Ray path scan velocity

scale ≳ 6 km

scale ≲ 3 km

GNSS Satellite

Radio Object

Ray path

LOFAR & GNSS

Earth
A: Enhancement in LOFAR VHF scintillation and in GNSS ROT
B: Enhancement in LOFAR VHF scintillation and not in GNSS ROT

- E region: \(\approx 100 - 120 \) km
- F region: \(\approx 120 - 500 \) km

Scale:
- \(\geq 6 \) km
- \(\lesssim 3 \) km

Drift velocity

Ray path scan velocity
Motivation

The radio wave scintillation mechanism

LOFAR scintillation observations

Examples

Conclusions
Conclusions

• LOFAR enables the observation of different gradients in the ionosphere.

• For example, LOFAR can detect different gradients in the ionosphere which are not necessarily detected through GNSS.

• Radio wave scintillation can be utilised to estimate spatial scales of irregularities originating scintillation on LOFAR measurements.

• These measurements have the potential to advance the understanding of ionospheric mechanisms.

Credit: Flisek et al., under review
Data obtained with the International LOFAR Telescope (ILT) under project codes LC7 001 and LC8 001. LOFAR (van Haarlem et al., 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Universite d'Orleans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK; Ministry of Science and Higher Education, Poland.

This work was also supported by the UK Natural Environment Research Council (NERC) (Grant number NE/R009082/1, Grant number NE/V002597/1, and Grant number NE/W003074/1).
References

• Flisek P. et al., Towards the possibility to combine LOFAR and GNSS measurements to sense ionospheric irregularities, under review at Journal of Space Weather and Space Climate.
Thank you for the attention.

Biagio Forte
Department of Electronic and Electrical Engineering,
University of Bath,
United Kingdom
b.forte@bath.ac.uk
The experimental datasets

Dense network of GNSS geodetic stations

Three LOFAR stations

One GNSS Ionospheric station

Credit: Flisek et al., under review
Example: DOY271 2017

GNSS satellites

LOFAR:

- Cassiopeia A
- Cygnus A
- Taurus A

Credit: Flisek et al., under review
Fading caused by ionospheric scintillation

Credit: Forte et al., in preparation
Example: irregularities related to TID

Credit: Fallows et al., JSWC, 2022
Example: irregularities related to TID

Credit: Fallows et al., JSWC, 2022
Methods of analysis

Credit: Forte et al., ApJS, 2022
Methods of analysis

Credit: Forte et al., ApJS, 2022
LOFAR VHF Zero-Mean Normalised Intensity Fluctuations

1 minute

3 minutes

5 minutes

PL612 - DOY271 2017, 16:45-18:30 UT

Credit: Flisek et al., under review