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INTRODUCTION AND FORMULATION OF THE PROBLEM
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Typical locations in extra-terrestrial space where radio waves from astrophysical radiation sources (AGNs,
SNRs and pulsars) are altered by an ionized medium. Both the interstellar and interplanetary mediums are
extremely rarefied, although the radiation path is long in these regions. The ionosphere, on the other hand, is
a much denser medium by comparison. Figure base on similar one from [Btaszkiewicz et al., 2020]
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Simplified diagram of wave processes leading to ionospheric disturbances under investigation



Transition: Dynamic - Quasistatics with accounting for “previously lost quasi-

3
magnetostatic” (magnetic) field. — I. Equations and boundary condition
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Equation (1), (2) with boundary conditions (3), (4)at Z=12

w» and (5) at z= 0 determine entirely the
solution of “dynamic-quasistatic” problem



Limiting pass: Transition - Quasistatics with accounting for “previously last 4

quasi-magnetostatic” (magnetic) field — Il. Effective tensor impedance on the
atmosphere-ionosphere boundary: analytical-numerical combined model
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Numerical modelling (night) of penetration of ULF field with given current source: using new 5
integrated dynamic-quasistatic model with inclusion quasimagnetostatic field, lost previously
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Numerical modelling (night) of penetration of ULF field with given current source: using new
integrated dynamic-quasistatic model with inclusion quasimagnetostatic field, lost previously
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Spectral analysis and information entropy approaches to data of
VLF disturbances in the waveguide Earth-ionosphere (WGEI)
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Results

The following variations in the VLF
signals propagation in the network of 9
receivers in Japan have been revealed
with periods:

5-10 minutes;

20-25 and 60-70 minutes;

3—4 hours;

weekly trend (anthropogenic activity)

Information entropy has been found to
show maxima near sunrise and sunset,
and the time of these peaks relative to
the indicated moments changes with
season.

ULF penetration through the system
Atmosphere-lonosphere-
Magnetosphere. Limiting pass
"Dynamics-quasistatics". New model of
VLF electromagnetic waves (EMW)
propagation in WGEI. The presence of
ULF modulation of the VLF EMW
spectrum propagating in WGEI is
qualitatively explained. Corresponding
models of ULF acoustic-gravity waves
(AGW) and their mixing with VLF EMW.
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Oscillations are revealed in the VLF spectrum in the waveguide Earth—ionosphere. Their periods:

(i) 5-10 min. — fundamental modes of atmospheric gravity waves (AGW, firstly!); (ii) 20-40 min —~AGW,
(i) 2-3 hours — gravity branch of AGW; also weekly — technogenic trends of ionosphere parameters.
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We present the estimations illustrating the possible connection between the periods of
oscillations characteristic for AGW and resonant properties of the atmosphere as the media
of existence and propagation of AGWs. A detailed substantiation of this possibility of
resonant modulation of VLF spectra by AGW frequencies is presented in Appendix A. For
the convenience of readers, here we very briefly outline the essence of what is presented in
Appendix A, namely: (1) interaction between AGW existing in the atmosphere and VLF
EMW propagating in the WGEI can be connected with the generation in the ionosphere
of the currents on the combinations wyr = wagw of the frequencies wy; r of VLF EMWs
and wagw of AGWSs. Such the current can be caused by two factors (see relations (A5),
(A6) in Appendix A): (a) dragging of charged particles by means of AGWs against the
background of ionospheric plasma with disturbances of charged particle concentration
caused by VLF EMW; (b) motion of plasma particles with frequency of VLF EMW on the
background of slowly varying plasma concentration, caused by AGW in the atmosphere-
ionosphere; (2) AGW as global oscillations in the atmosphere-ionosphere are excited
resonantly, and therefore relatively very efficiently, as the so-called reactive, or evanescent,
modes [20,55-59]; an influence of the AGW packets containing such modes on the stable
and unstable ionosphere has been investigated in [19,60] and [20,61], respectively. The
estimation presented below would not cover comprehensively the all complex processes of
the VLF modulation by AGW, outlined above. In the present paper, we restrict ourselves
only with the demonstration of the fact that the obtained spectra of the modulation of
VLF EMWs propagating in WGEI are quite compatible with the conditions of the resonant
excitation of the global AGW modes. Then, we suppose that such resonant AGW mode
excitations may be the reason of the most remarkable components of the revealed VLF
spectra. Two main resonant reactive AGW modes [20,55-539] are the Lamb waves for which

Ay=ct; ky=2m/Ay; E=qgH; H=kgT/mg (9)

and Brunt-Viisald oscillations with frequency

w=wacw=ws wh=[(y-1)/7(g/H) (10)

In Equations (9) and (10), 7, k, and A, are AGW period, wavenumber in horizontal
direction and corresponding wavelength, respectively; ¢, g, H and 7 are atmospheric sound
speed, free-fall acceleration, atmospheric scale height and the adiabatic constant for the at-
mosphere; kg, T and m are the Boltzmann constant, temperature of the (neutral) atmosphere
and average mass of the atmospheric particles. Note that the temperature in the lower part

of the atmaosphere (zle100 km) does not change, in particular with altitude, remarkably
compared to ong in the thermosphere, respectively; the local approximation for the AGW
field in the atmosphers can be used for the evaluations [52]. Respectively, it is supposed
that the AGW velocdity components 1, ; are proportional to exp [flwt — kv — Ez]]; here,
Kz = 1/2H = kz, whare the first term is connacted with the presence of atﬂ'umpherj.c atrati-
fication |62,63], k; = k + ikl i3 the effective vertical wavenumber of AGW with real and
imaginary parts equal to ki and k¥, respectively. For the prmpagaling modes (in vertical
direction), kY = 053] while for the resonant reactive modes (), (100, k) = 0]19,55,58-60).
In spite of the evanescent character of these mades, their impact on the ionasphere and
WLF waves perturbations may be impaortant in the case of the sources, distributed by the
altitudes in the atmosphere-ionosphere in the wide amplitude range Az Az i on the arder
of a few dozens of kilametres, namely Az ~ 20 km for the strongest tropical cyclones | 54,55]
and for the sources farming before the strongest earthquakes |56} ssismogenic sources
forming after the strongast earthquakes are powerful enough to provide the covenng by the
correspanding excited waves all the atmospheric altitnde ranges up to the ionosphers [57].
Accounting for this, we will stress in our estimations on the most effectively excited global
atmospheric Brunt-Viisild oscillations and Lamb waves, in spite of thair reactive character
with the characteristic scale of evansscent decrease with the altitude of order |k2[=° ~ H.
Consider these evaluations for the several characteristic spectrum components revealsd
during the data processing described above in the present Section 3.

The spectra maximum with the period T ~ 3 h ~ 10¥ 3 accounting for that [53],
¢~ 0.3 km/s may carrespand, by the arder of valus, to the excitation of the Lamb wave
with the half wavelength of arder of 1300 km {Ay = c7/2, compare with relation (%), which
carresponds to the characteristic dimension of the size of the horizontal projection of the
erminator, see Figure 4n and [53] Earthquake [15,5%] ar trapical cyclane [ 43] sources with
the horizontal sizes (300-1000) km may excite the Lamb waves with the corresponding
wavelengths (see Equation (%) and Appendix A)and the periods of arder aof (20-50) min
{se2 Figures 4c—2 k and 7). Then, the oscillations with periods T ~&6-7 min, presented in the
VLF spectra [Figure 7 are prabably excited glabal atmaospheric Brunt—V4isild oscillations
{se2 Equation (10} and Appendix A relations (A20)}. MNote also that the periods of the arder
af few minutes revealed in the VLF specira (see Figures 4kn and 7)may characterise the
AGW maodes in the opened waveguide Earth-Thermaosphere [7)]. In accordance with the
dispersion equation (based on the isothermal approximation |53 presented in Appendix 4 in
the first line from the relations (AL7), the dispersion of the AGW branch mode af waveguide
Earth-Thermaospheare is approedrmatsly:

wfan oy L= [[2H)2 (k" =k = ca/2 Hike ~ /L (11

In (11} L ~ 100 km is the effective width of the "Earth-Thermosphere” waveguide of
the AGW. Using relation (11} and putting, far the rough estimations H ~ & km [53] and
ky ~ kz,yiglds T = 27 /w ~4 min. By the arder of value, such evaluations correspond to
the similar theoretical results for AGYY period presented in [71] and to the periods revealed
in the spectra of VLF (s22 Figure 4n).

The more detailed analysis would be necassary to reveal the VLF modulation in WGEL
by the strangly excited double resonant Brunt—'disdld-Lamb oscillations [5%], see relation
(AZ1). This will be a subject af the next paper(s).

Mote also that the oscillations with periods {1-2) min., which are the most pranouncad
amang the AGW oscillations revealed in [34] from the spectra of VLF waves on the
Germany-5erbia path, reflected from the upper boundary of the WGEL are also presentad
in the spectra revealed from our data obtained as a result of the processing VLF data from
the [apan paths (Figure 4n). In distinction to the data presented in [34], our data oscillations
with periods (1-2) min are relatively weakly pronounced (Figurs 4n).
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VLF disturbance with ULF modulation in the Waveguide Earth-
lonosphere (WGEI)

AGW: For propagation upward and wave field 0¢e“* -
In the absence of losses = 1 e *Dgkiz; k;’=i+5k;’

If oJk;<0 = evanescent (reactive) AGW modes
Main resonant reactive AGW modes - Lamb waves:

A,=cr; k, =272, c*=ygH; H=k,T/mg; 1=27/w
w=wy; oz =[(y-1)/y1(g/H)

2 Corresponds to the size
103 h010°s; cJ0.3 km/s; A/201500 km— horizontal projection of
the terminator;
Tropical cyclones or earthquake with the horizontal sizes ~(300-1000 km) may
exite Lamb waves with the periods ~(20-60) min; the oscillations with

periods t~(6-7) min.
The dispersion of AGW mode of WGEI:

ol @, \1+(@2H) (k2 +K2); @, =c,/2H; k, 0 z/L; L0100 km; H [ 8km;
If k,0k, > 7=27/wl4 min
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Influence of AGW on the ionosphere and mixing VLF EMW + ULF
AGW
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Excitation of oscillation in coupled Schumann Resonator - lonospheric Alfven
Resonator (SR-IAR) are possible!
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Important: (1) k, =Re(k,) ~ R:* [Im(k ) =0]; (2) @=Re(w)+ilm(w) (E,H 0" ;
(3) But, when the field of the modes is determined, we put Im(w)=0 (Vainstein L.A. Open
Resonators and Open Waveguides, Sov. Radio, Moscow, 1966)




Waveguide Earth-lonosphere and lonosphere Alfven resonator
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Coupling in the system (Earth)-Atmosphere-lonosphere-Magnetosphere (LEAIM)

z[1500 km
\

HF EMW &
MH ‘ Spiral
Alti- M2 &= Wind
tude K/@

el
<!
S
.
‘

MAGW

Scattered <t
East \é EMW <T

West \
211100 km South EMW N North

Thermal instability / 7\7\ AGW TO LOFAR

humidity

Source in the lover
atmosphere

7=0km ~~~-~~~
E, and B —background electric filed and
geomagnetic field

0 - angle between the total effective electric
filed E,+V" xB and the east direction;

I - magnetic inclination angle;

a - angle between the direction normal to
the frontal structure and east direction;

H - atmosphere scale hight
8U =

- scale height of vert. shear U
UE o

[3D coupled Perkins E instability. T. Yokogama et al. VGR 114, A0 3308 1-16, 2009]

Perkins

‘EO +VF x E‘cos I
instability 7, =

sin(fa) sin(«)

H
E -layer 3 V.F cosl o
instability Hooo 2o +Z5+27
(sporadicE)) p =0 Q

=sin(a) cos(a) -1)

2, p - field line integrated Hall and Pederson
conductivities, respectively

Under the nighttime —2, is provided by E_ layer
Zpis provided by F region - E_ and F (Perkins)
instabilities do interact with each other

Vo =Vo+AVe ks Ve =Ve +AVe ¢

Coupled Perkins-E instability

At the same range of altitudes where TEC and
different structures in ionospheric E-F structures
are formed E [characterictic] (10-100) mV/m (!)

AGW or MAGW seeding factor for E.-F instability



Travelling lonospheric Disturbances (TIDs) [Ratcliffe 1956; Rishbeth, Garcott 1969;
Hooke 1968; Francis 1974; Clark 1971; Yeh, Lin 1974, 1972; Shiokawa2003; Koval 2018;
Rapoport 2004; 2017; Vadas 2005; Matcheva 2001]

AGW — gravity branch, approximately

u ou(z)
V' ov'(2)
o' |(X,Y,2)=| 60 (z) |expli(k X+ K,y —apt)]
P’ 6p'(2)
T’ oT'(2)
@20 N; HO = (-1 apO)l H=(~Poyt (H_HOYHOD 1
y OZ P, Oz

or, ¢ - . .
I'= ( . C—) — static stability coeff.; P. — Prandtl number;z —mol. din. vis.
p

—molecular thermal heat conduct; k, 0 max(k,,k,)

x=c,ulP,
Use qualitively wxB approximation
2 ~
oo L+ K20(2) = 0; @(2) = dw(z)exp(- —[dz/H")
vV -2 = [—+ 0. 19 _](' V') = L G
H ot ox P, OZ 2o 0(X,Y)
k>N? 1 aH”
2 _ n
E C@@+iB) 4H7 -2 dz ] N*=(9r/z,) —puoyancy frequency
[8_+u06___1 9,9 u—IT'+r'e' =0, —( )—B
ot ox p,P oz 8 oz p, H



i 1.0 0 0° 1
=0, +io; o, =-IM[=(—+u, ——v—)"]=d, + 2k,,v(—= -k,
@ a)i’ a)l a)l’ [ur(at 08X Vazz) ] a)O zrv(ZH 2|)
1.0 0 0? 1
= Re[= (= + Uy — —v—)u=V[KZ — (=5 — k)’
a)l [u,(at O&X Vazz) ] V[ zr (2H ZI) ]

L O B
B =Rel =1y )T 1= (G ~0KG ~ (e =)'l

@, =m,— Uk, -internal wave frequency; u,- wind velocity

v=ulp, -Kkinetic viscosity; wave-like solution (wxB)

B(2) = Aw(zo)[%zzf)))]” expl— [ k,dzlexpli [ k, 2]

Aw(z,) -amplitude of reference altitude

z

(6 y,20) = Aa(D)c0sp; Ao =Ao(z) () expl [ (L

—k )dz
kzr(Z) ’ 2H* ZI) ]
p=kx+ky+[k,dz-aof
, P 7
T'(x,y,2,t) :—AW(z)cochos((p—E—e)
a)l’
, @ K @ K. 1 cos(p—0")
X,Y,2,t)=—"AAW QA - — (- +
Pixy.z0 k? ( a)r(kzr 2H*kzr)) cos &’
taneziﬂ; tan@':(ﬁ+ﬁ+ l )[1—ﬁ(ﬁ+ 1 )]
pl’ a)l' a)l' er 2H kZI' r er 2H k
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Equation and solution for electron concentration

ON, =, - affN? ,
= +V(NV,)=P-L; L=——===0L+L
o YNV (BraN,)
Linearization:
NG+(NZ)  NG+(NZ)  oN, @l B) e
LOa—— L ” R INg = LN,
1+ 4N, 1+ 2N, No+(NF) 1 2y
B B B
N, +V(N Vo + N V) =P —L/N/ - perturbed equation
§(Ne0\7eo +<Ne, \7e'>) =R -L
- v, = 2Kl [(Wuﬁ'\'w RN}
In the absence of background wind  Veo M TN, H e

Ty - plasma temperature; H, - plasma scale high; T =—g/|g|; I, :—B/\B\;

U/=U'+U’; “c” and “d” - collision and diffusion, respectively.

1
1+772

For the collision part of drift: U, = [7°0; +7U; <1 + (U 1)l

n=v,lao,; U’ -neutral wind velocity; in F region; 701  UcOU; )l



Suppose charge of ion production P’ induced by GWs is negligible
[+ (L + (0 ) + T DIN+ TN, =0
Analytical accounting for chemistry and diffusion effects

D= [% +(L + (ﬁudo) v (Udoﬁ)]

1

Q=i—DN!
N,
oo 1 aN, 1 -
N (X, Y,2,t)=N_ U, -1;)[k s —i 0 4 -k, )1,
(X, Y,2,8) =N (U -15)IK g (Neo F T )(Igl,)]
Q
L I 1 - -
Q 0w,-KkU,: Q0L +VU, —(K+-——VN_ - VN,
’ ’ NeO NeO ’
=t i, 1= T . .
QUL +VU, —(k +N—VN0 _N_VNeO)UdO’ N, - background atmospheric concentration
0 e0

Nonlinear equation for electron concentration.

oN,
ot

VT, |

+ §{_N60[VNNe +

e p p (

2KT
o=—>-=>

m.v;

i7in0



Generalization of the equation for TID concentration to the case of presence of
vertical and horizontal wind and recombination / photochemistry process

n Un,
on. 0 naT n
—L=—(D,sin’I P+ —)—wn]-pn +
ot z( (z T 0z H) d=pn+d

z=(200-500) km; For the main ion O+ - Production Q =0; ; recombination L, =pN,
= (Vn[ )z + (Vil)z; (a)nH)z _[Wind + AGW]’ (Vil)z —EM drlft

¢:kxx+kyy+jkzrdz—wot; AW, = AW (Zo)(k"((zo)))”z
Zy 0

Viaou =W, (2)exp(ip)[ay,, Ay, 1 Tp =Top + ar,[IW, (2) exp(ie) —

_ ~ _ 600~ ;=[§5mlllnm
ViL — —(C/ H 2)[H % E], V;100°2.5m/s
Linearization: n =a,, W, (2)exp(ip) 5001
Gty = (1, Koy Vi )1--) <
' ' ' ‘é’ 400
Note! TID vertical profile has Az~150 km =
Optical thickness for so-called this scattering screen 300
f04-10"Hz 200

A0107%km

L[J150- %DlOS

100 ! 1 1 1

100NN {percent)

Perturbed concentration profile;

Lo = kA2 0110°0 1 > Opposite to “thin screen AGW, T=15 min [Davis. JASTP 1973]



z ;-
/ 7' g 1g O Also: 4% B
; &g & o0 K [ -frame]
! 7
X 0 0 &3 y’

NG E D exp(iot) exp(-ikr) To get dispersion equation we use (x',y',2)

n’=k?/k¢; ky=wlc; ;n =k Iky; V(VE)—AE-kZEE =0

n®=n/+n+nZ; n°sin®y =n’+n?; n’cos’y =n’ Similarly for y,z

i dx D, . do D

(h2 _51)E1 - |gE2 =0 Dispersion equation: at =V, =—Re( D, <), dt - Dt

- 2 _ . . =
IgE, +(n; —&)E, —-n,n,E, =0 = D=0, | pasis: [ V=, (1// \% %) (1)

—n,n,E, + (1 —&,)E, =0 .
_ y K. —complex; Vg o = Re(Vy)

2.2 2 20 (v U _ v 2 2 SIn”
D=k°c" -0+ w,F(F,k,») =0; F:1+Z+W [cos” iy + ]

2(1—-u)

2
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2(a—b+d)
d=¢g(gf-9g%); n*=1- ; “r
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Scattering of HF (MHz) on the regions with increased and decreased
electron concentration
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Complex geometrical optics: adding dispersion and diffraction and
importance of birefringence
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Complex geometrical optics: dispersion, diffraction birefringence and change of
frequency due to non-stationarity of ionosphere
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Complex geometrical optics: dispersion, diffraction birefringence and change of
frequency due to non-stationarity of ionosphere

-1.
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Complex geometrical optics: dispersion, diffraction birefringence and change of
frequency due to non-stationarity of ionosphere
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Complex geometrical optics: dispersion, diffraction birefringence and change of
frequency due to non-stationarity of ionosphere
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Complex geometrical optics: dispersion, diffraction birefringence and change
of frequency due to non-stationarity of ionosphere
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Conclusions and future work

1) Complex geometrical optics (CGO) for comparison of LOFAR-GNSS observations
with theory of EMW propagation and scattering on TIDs and other plasma structures in
the unstable ionosphere; accounting for birefringence, dispersion, diffraction, change of
wave frequency due to non-stationarity of the ionosphere;

1) TIDs : L, =KL >>1 = opposite to thin ionosphere/thin screen approximation;

2) Instability F-E, : Developing lonosphere Plasma Structure may cover all the (E-F) altitude

range of ionosphere, where TEC is formed,;

3) Scattering of Radio Waves (RWs) of plasma inhomogeneities;

4) CGO: change of w due to non-stationary; w= w(z, t): z = t; w= w(t); An of opposite

sign - extreme of different signs of Aw(z).

For the future work:

- Modelling TIDs accounting for: (1)their propagation is non-horizontal; (2) presence of wind; (3)
presence of photochemistry processes; (4) forming TIDs under influence of AGWs;

- 3D Modeling formation and propagation of lonospheric Plasma Structures (IPS) accounting for
(a) instability such as Es, Perking and combined Es-Perking instabilities in all the range of
altitudes of E and F regions of lonosphere, where TEC is formed; (b) plasma nonlinearity;

- Modeling scattering RWs on IPS/TIDs for the conditions of different levels of solar/geophysical
activity; including period of solar maximum 2023-2025, with increased Ne/TEC, strong-gradient
IPS/TIDs formation in all the ionosphere; and expected penetration of the IPS/TIDs with
extreme parameters (amplitudes, gradients) from high- and low- to middle-latitude region;
accounting for scintillations in the ionosphere.

- Modeling-base determination of the conditions of applicability/no-applicability of the
approximations of “optically thin ionosphere/scattering screens”, ergodicity etc.
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Conclusions concerning ULF anf VLF processes in the Earth-
Atmosphere-lonosphere system including waveguide Earth-
lonosphere (WGEI)

. The methods for modelling ULF electromagnetic and AGW channels of
coupling in the system “Earth—atmosphere—ionosphere” and VLF propagation
iIn WGEI has been developed.

I1.Signal is processed with Fourier, wavelet and information entropy
approaches. Oscillations of 5-10 min, 20-40 min, 3 hour, 7 days are revealed
In VLF/WGEI data.

[11.In the theory of atmospheric electricity (TAE) — magnetic is lost! —
modification of TAE / global eclectic circuit (GEC) models — is modified!
IV.Powerful Volcano Eruption (f.e. Hunga-Tonga) can excitation the coupled
Schumann-Alfven resonator. Such excitation is a remarkable manifestation of
an influence on Space Weather ,From the sources placed below the
ionosphere”; boundary conditions used for the modelling: at the Earth and at
Z=800 km. Excitation of Alfven resonator by local powerful source has the
global character and can pronounced itself brightly, in particular of Hunga-
Tonga Volcano eruption-excitation event, f.e. at Finland coordinates.
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