Radio Telescopes and Ultra-High Energy Cosmic Rays

With many thanks to LOFAR CRKSP and SKA SWG members for figures and graphics

Anna Nelles

Friedrich-Alexander-Universität Erlangen-Nürnberg

Scientific motivation

Where are ultra-high energy cosmic rays from?

How to address this?

3

How to address this?

DESY. Anna Nelles

How to address this?

Measure cosmic rays with better precision

3

Radio signals

A theoretical introduction

npn

- Highly energetic particles interact with medium and create shower of secondary particles
- Generally one distinguishes hadronic and electromagnetic showers
- Hadronic showers always have a electromagnetic component

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects
 - Magnetic field: Geomagnetic field, Lorentz-force
 - Charge imbalance: Particle Physics processes
 - Index of refraction: Relativistic compression

DESY. Anna Nelles

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects
 - Magnetic field: Geomagnetic field, Lorentz-force
 - Charge imbalance: Particle Physics processes
 - Index of refraction: Relativistic compression

DESY. Anna Nelles

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects
 - Magnetic field: Geomagnetic field, Lorentz-force
 - Charge imbalance: Particle Physics processes
 - Index of refraction: Relativistic compression

NGEN CENTRE

Are we really sure that we have understood this?

Quite a lot of experimental evidence:

LOFAR has been THE instrument for this

How do we know this?

- The key evidence: Polarization
 - Geomagnetic effect: Lorentz-force, polarization orthogonal to shower axis and magnetic field
 - Askaryan effect: Polarization points towards shower axis

How do we know this?

- The key evidence: Polarization
 - Geomagnetic effect: Lorentz-force, polarization orthogonal to shower axis and magnetic field
 - Askaryan effect: Polarization points towards shower axis

How do we know this?

- The key evidence: Polarization
 - The two processes stem from slightly different heights
 - Time difference = phase offset between two emission components
 - Leads to circular polarization

- Emission is due to both geomagnetic emission (dominant in air) and Askaryan emission
- Geosynchrotron radiation is a correction of < 1% to these effects

There is also a Cherenkov ring but not Cherenkov emission

- The emission is only strong if it arrives coherently (at the same time for all frequencies, high frequencies more pronounced effect)
- At the Cherenkov angle, an enhancement is seen, in air this is very close to the shower axis
- Same effect for showers in ice, but here Cherekov angle ~ 52 degrees, so it looks much more like "Cherenkov radiation", but it is not
- If one had the same shower development in vacuum, it would still radiate

We know all this from air showers

Are air showers still interesting?

- Air shower measurements were used to:
 - Provide the proof-of-principle for radio detection of particle showers
 - Confirm the emission mechanisms down to subtle features, agreement with Monte Carlo simulations astonishingly good
 - Develop methods of how to reconstruct data, remove the contribution of noise, understand antenna theory for impulsive events, ...
- But a technique is only useful, if it can also contribute to advancing the astroparticle science case

Cosmic-ray energy spectrum Air shower physics Particle Physics Sources of UHECR Acceleration Cosmic-ray composition Propagation **DESY.** Anna Nelles

Detecting radio emission of air showers

Energy estimation of cosmic rays

- Radio detection provides and excellent energy estimator
- Calculation from first principles
- Very little systematic uncertainties (< 5%) in method

Detecting radio emission of air showers

Energy estimation of cosmic rays

- A radio energy estimate could reduce systematic uncertainties between observatories
- Long standing issue in interpreting cosmic-ray data between observatories:

Remove ad-hoc scaling, which has been impacting theory

Detecting radio emission of air showers

What is in it for the science?

• Radio pattern is very sensitive to X_{max} = particle type

- Tension to Auger measurements, but agreement with Northern hemisphere experiments
- Rotential for radio measurement on Southern hemisphere

13

D geo / m

Estimator of the mass composition

Estimator of the mass composition

Will this image remain like this? Plans for LOFAR

- Measuring air showers is about statistics
- Enlarge particle array for better trigger
- Use simultaneous observations in low- and high-band (LOFAR 2.0)

16

What is the competition doing?

Experimental neighborhood.

- Multitude of air shower arrays
- Many of them in hybrid configuration, tuned at different purposes
- LOFAR core still has unrivaled antenna density
- Square Kilometre Array (SKA) will be direct future competition
 - Although technical feasibility current still under discussion

Figure: Huege 2016

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

17

Estimator of the mass composition

How do we do this with LOFAR?

- Make 30 simulations (covering the range of options for shower maximum)
- Fit the simulations to data, including the system response
- Optimize for the best suitable X_{max} which is an estimator for the mass

- Very brute force and computationally expensive, lots of interpolation
- An array with better antenna coverage would allow more elegant solutions

More elegant solution?

Information Field Theory

- German Federal Ministry recently funded a new consortium: ERUM-IFT
- Torsten Enßlin (MPA), Marcus Brüggen (UHH), Martin Erdmann (RWTH), Ralph Engel (KIT), Jakob Knollmüller (TUM), Anna Nelles (FAU), Judith Reindl (UniBw M), Dominik Schwarz (UBI)
- One project: Novel data analysis for LOFAR cosmic rays
- Goal: Working together on efficient antenna modeling with other LOFAR users

Air shower detection with the SKA

And this is also why we need to take a new look at our methods

20

Air shower detection with the SKA

Taking radio emission to the next level of detail

- Next to more antennas, also nicer broad-band frequency coverage 50 - 350 MHz
- SKA has enough antennas to use the raw data directly, no interpolation, no fitting
- Extreme challenge for cutting edge data science
- But: so much more in signal
- May be able to resolve height of first interaction, shape of shower, 'clumpiness', etc
- = More precise access to cosmic ray composition, great for astronomy
- = Independent handle on hadronic interaction models, direct implications for particle physics

Simulations: Arthur Corstanje

Taking radio emission to the next level of detail

 Currently all methods work in progress, some ideas a bit speculative, but level give you an idea

- First order: particle type correlated with maximum of distribution
- But hadronic interaction model needed to match them directly

The problem with hadronic interaction models

We have enough free parameters to fit X_{max} , L, R at the same time

- This is using the 'old-style' LOFAR analysis with SKA simulations
- Just to get an idea of what we could do

What else?

- Maybe use a 3D beamforming algorithm to reconstruct this directly?
- Direct implications for particle physics!
- Detect PeV gamma-rays from the Galactic Center?

What else?

- Maybe use a 3D beamforming algorithm to reconstruct this directly?
- Direct implications for particle physics!
- Detect PeV gamma-rays from the Galactic Center?

LOFAR will not be able to reach SKA resolution, but is a very important testing and preparation ground!

Lessons learned from LOFAR for SKA

The perspective of the Cosmic Ray Key Science Project

- Get your users involved early in software development, new ground-breaking measurements come through software in distributed telescopes You won't know what we need, until we know what we can do!
- It is important to connect the people building the array and the ones doing data-analysis!
- Don't underestimate the challenge in understanding the antennas
 - LOFAR started science operation in 2011
 - Model for LBAs still work in progress (as you know!)
- I think we have a responsibility here to spread our knowledge on all levels

Short digression:

Lightning science part of CRKSP

- When working on the air shower detection with LOFAR, we realized:
- Thunderstorms influence air showers and their radio emission
- See e.g. Trinh et al (AN), JGR: Atmospheres 125 (8) 31433, Schellart et al (AN), PRL 114 (16) id.165001
- LOFAR is the world's most powerful lightning interferometer
- Undoubtedly due to the hard work of Brian Hare (and Olaf Scholten)
- See e.g.: Nature 568 (7752), 360-363
 PRL 124 (10), 105101
 JGR: Atmospheres 123 (5), 2861-2876
 Phys.Rev.D 104 (2021) 6, 063022
 Geophys. Res. Lett., Volume 48, Issue 23, e95511 (2021)
 Scientific Reports volume 11, 16256 (2021)
 Phys. Rev. D 105, 062007 (2022)

Conclusions

Cosmic Rays and Radio Telescopes

• Sources of high energy cosmic rays

- Radio detection of air showers already now leading in precision measurement of mass composition
- LOFAR has been instrumental!
- SKA: ultimate precision

Understanding air showers

- Particle physics unknown at highest energies
- High-accuracy measurements with SKA could deliver particle physics insights

