Cosmic rays with LOFAR 2.0

Katie Mulrey for the CR-KSP

WAN OVER

k.mulrey@astro.ru.nl

K. Mulrey

energy & composition

A. Corstanje et al 2021

energy & composition + statistics

A. Corstanje et al 2021

K. Mulrey

energy & composition + statistics

A. Corstanje et al 2021

K. Mulrey

Higher energies: need a bigger detector

Lower energies: need to control for detection biases

LORA upgrade

Standard operation

Keep trigger rate ~ 1/hour

(12/20 scintillators)

LORA upgrade

600 400 deposit (MeV) 200 10² y (m) × ×× 0 -200 10¹ -400 -600-500 500 0 x (m)

NEW operation

Keep trigger rate ~ 1/hour

(12/20 scintillators)

minimum number of detectors triggered

K. Mulrey

Hybrid Trigger

What if we want to bring the trigger condition WAY down?

Hybrid Trigger

Monitor TBB level signal

K. Mulrey

Can we probe this with LOFAR 2.0?

LOFAR 2.0

- Continuous observation
- Simultaneous observation with low + high band antennas

30-80 MHz

50-350 MHz

30-80 MHz

K. Mulrey

LOFAR family meeting 2023

Traditional event analysis

$$\chi^2_{\rm radio} = \sum_{\rm antennas} \left(\frac{P_{\rm ant} - (f_r^2) P_{\rm sim} (x_{\rm ant} - x_0) y_{\rm ant} - (y_0)}{\sigma_{\rm ant}} \right)^2$$

$$E_{\rm radio} = f_r \times E_{\rm sim}$$

Free parameters: energy and core position

Can we measure this?

K. Mulrey

110 simulated showers with same X_{max} (within +/-0.5 g/cm2), different L, 50-100 MHz

Can we measure this?

110 simulated showers with same X_{max} (within +/-0.5 g/cm2), different L, 50-100 MHz

 $L + 16 \text{ g/cm}^2 (R - 0.3) / 0.06$

K. Mulrey

LOFAR family meeting 2023

How do we scale this up to handle 10x the events and many times more needed for LR analysis?

Template synthesis method

K. Mulrey

Template synthesis method

K. Mulrey

Waveform interpolation

A. Corstanje, in prep

K. Mulrey

Waveform interpolation

 Interpolation algorithm to reconstruct the full pulse time series at any position in the radio footprint

K. Mulrey

LOFAR 2.0

Continuous observation: x10 events

- Simultaneous LBA + HBA
- Increased energy range
- Shower reconstruction beyond X_{max}

Plenty of new cosmic-ray science to do with LOFAR 2.0!

Backup

Shower imaging

LOFAR family meeting 2023

LOFAR event

- LOFAR data: First hint of radio reconstruction of L! for given X_{max}, fit quality depends on L
- L-Xmax fit possible with LOFAR?
 LBA+HBA bandwidth would help!
- Important factors:
 - core fit precision (extended bandwidth helps)
 - homogeneous coverage (more events help)

Very promising analysis for LOFAR 2.0

K. Mulrey

LOFAR family meeting 2023

Where do cosmic rays come from?

$$E_{max} \propto Z e B r$$

energy + composition

K. Mulrey