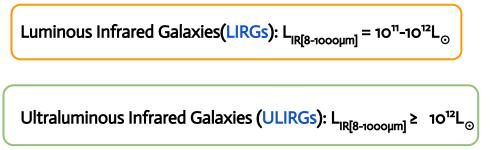


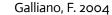
Panchromatic SED modelling of Infrared Bright Galaxies

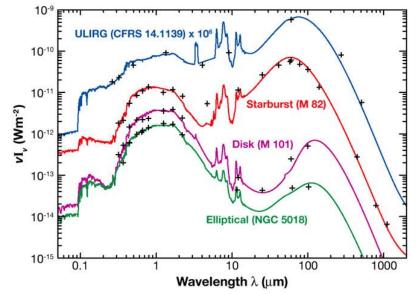
Subhrata Dey

Astronomical Observatory of Jagiellonian University

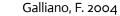
Thanks to: Arti Goyal, Katarzyna Małek, Krzysztof Chyży, Timothy J Galvin, Nicholas Seymour, Tanio Díaz Santos, Vassilis Charmandaris, Michał Ostrowski

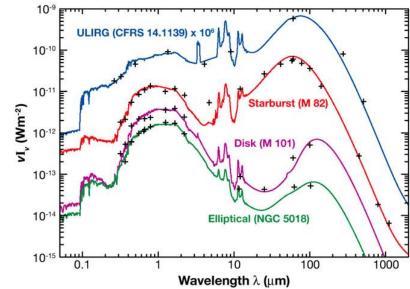

Introduction




Luminous Infrared Galaxies(LIRGs):
$$L_{IR[8-1000\mu m]} = 10^{11}-10^{12}L_{\odot}$$

Ultraluminous Infrared Galaxies (ULIRGs):
$$L_{IR[8-1000\mu m]} \ge 10^{12} L_{\odot}$$


Introduction



Introduction

Luminous Infrared Galaxies(LIRGs):
$$L_{IR[8-1000\mu m]} = 10^{11}-10^{12}L_{\odot}$$

Ultraluminous Infrared Galaxies (ULIRGs): $L_{IR[8-1000\mu m]} \ge 10^{12} L_{\odot}$

What is Powering them???

Active galactic nuclei

and/or Massive bursts of star formation

Panchromatic SED modelling of Infrared Bright Galaxies

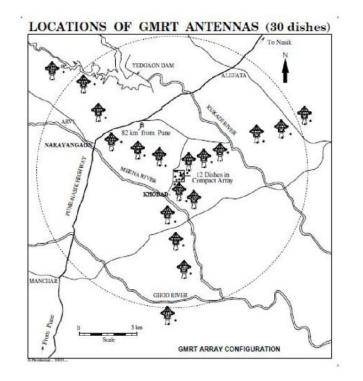
LIRGs: Sample Selection

- Selection criterion $L_{IR} > 10^{10.75}L_{\odot}$ from list Condon et al. (1996) of IRAS bright galaxies with flux densities > 5.24 Jy at $\lambda = 60 \ \mu m$
- Counterparts exist in the TIFR Giant Metrewave Radio Telescope(GMRT) Sky survey (TGSS DR4)

R.A.	Dec.	z	$\log_{10}(L_{IR})$	
(hms)	(\circ''')		(L_{\odot})	
(2)	(3)	(4)	(5)	
$10\ 24\ 31.4$	$-23 \ 33 \ 10$	0.0122	10.77	
$11 \ 02 \ 59.7$	$-16 \ 17 \ 22$	0.0128	10.65	
$12\ 06\ 51.9$	$-31 \ 56 \ 54$	0.0232	11.18	
$13\ 02\ 52.3$	$-23 \ 55 \ 18$	0.0217	11.34	
$13 \ 25 \ 44.0$	-29 50 01	0.0136	11.12	
$13 \ 32 \ 53.4$	-24 12 26	0.0162	10.85	
$15 \ 49 \ 49.6$	$-29 \ 23 \ 13$	0.0070	10.92	
$16 \ 19 \ 11.8$	$-07 \ 54 \ 03$	0.0271	11.29	
$16\ 47\ 31.1$	$-29 \ 21 \ 22$	0.0209	11.69	
$18 \ 32 \ 41.1$	$-34 \ 11 \ 27$	0.0181	11.62	
$19\ 14\ 31.1$	-21 19 09	0.0485	11.77	
	$\begin{array}{c} (h\ m\ s)\\ (2)\\ \hline 10\ 24\ 31.4\\ 11\ 02\ 59.7\\ 12\ 06\ 51.9\\ 13\ 02\ 52.3\\ 13\ 25\ 44.0\\ 13\ 32\ 53.4\\ 15\ 49\ 49.6\\ 16\ 19\ 11.8\\ 16\ 47\ 31.1\\ 18\ 32\ 41.1\end{array}$	$\begin{array}{c cccc} (h\ m\ s) & (\circ\ '\ '') \\ \hline (2) & (3) \\ \hline 10\ 24\ 31.4 & -23\ 33\ 10 \\ 11\ 02\ 59.7 & -16\ 17\ 22 \\ 12\ 06\ 51.9 & -31\ 56\ 54 \\ 13\ 02\ 52.3 & -23\ 55\ 18 \\ 13\ 25\ 44.0 & -29\ 50\ 01 \\ 13\ 32\ 53.4 & -24\ 12\ 26 \\ 15\ 49\ 49.6 & -29\ 23\ 13 \\ 16\ 19\ 11.8 & -07\ 54\ 03 \\ 16\ 47\ 31.1 & -29\ 21\ 22 \\ 18\ 32\ 41.1 & -34\ 11\ 27 \\ \end{array}$	$\begin{array}{c ccccc} (hms) & (\circ''') \\ \hline (2) & (3) & (4) \\ \hline 10\ 24\ 31.4 & -23\ 33\ 10 & 0.0122 \\ 11\ 02\ 59.7 & -16\ 17\ 22 & 0.0128 \\ 12\ 06\ 51.9 & -31\ 56\ 54 & 0.0232 \\ 13\ 02\ 52.3 & -23\ 55\ 18 & 0.0217 \\ 13\ 25\ 44.0 & -29\ 50\ 01 & 0.0136 \\ 13\ 32\ 53.4 & -24\ 12\ 26 & 0.0162 \\ 15\ 49\ 49.6 & -29\ 23\ 13 & 0.0070 \\ 16\ 19\ 11.8 & -07\ 54\ 03 & 0.0271 \\ 16\ 47\ 31.1 & -29\ 21\ 22 & 0.0209 \\ 18\ 32\ 41.1 & -34\ 11\ 27 & 0.0181 \\ \end{array}$	

1) source name, (2) R.A., (3) decl., (4) spectroscopic redshift from the NASA/IPAC Extragalactic Database (NED), (5) value of the absolute FIR luminosity from Table 1 of Condon+ 1996, except for NGC 3508, which is taken from Table 1 of Condon+ 1990.

Panchromatic SED modelling of Infrared Bright Galaxies


LOFAR FAMILY MEETING, JUNE 12-16, 2023

Data - Own radio observation

Observations

- Telescope : GMRT
- Date : June 2013
- Frequencies : 325 MHz and 610 MHz
- Analysis : AIPS

 Figure – GMRT array configuration

Archival radio data

Very Large Aarray

- Telescope : Very Large Array (VLA)
- Frequencies : 1.4 GHz, 3GHz, 4.8 MHz, 8.4 GHz and 14.9 GHz

The Galactic And Extra-Galactic All-Sky MWA Survey

- Telescope : Murchison Widefield Array
- Frequencies : 70–300 MHz

We also have data from ATCA and SUMSS for some of our galaxies Generation of broadband radio spectra - 80 MHz to 15.0 GHz • Synchrotron emission

$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha$$

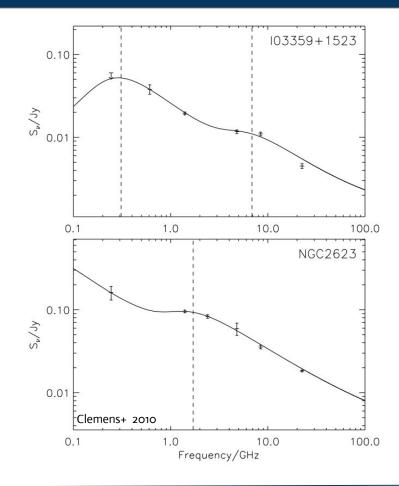
• Synchrotron and Free-Free Emission

$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha + B \Big(rac{
u}{
u_0} \Big)^{-0.1}$$

• Synchrotron and Free-Free Emission with Free-Free Absorption

$$S_
u = (1-e^{- au}) \left[B + A {\left(rac{
u}{
u_{t,1}}
ight)}^{0.1+lpha}
ight] \left(rac{
u}{
u_{t,1}}
ight)^2$$

• Synchrotron emission


$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha$$

• Synchrotron and Free-Free Emission

$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha + B \Big(rac{
u}{
u_0} \Big)^{-0.1}$$

• Synchrotron and Free-Free Emission with Free-Free Absorption

$$S_
u = (1-e^{- au}) \left[B + A {\left(rac{
u}{
u_{t,1}}
ight)}^{0.1+lpha}
ight] {\left(rac{
u}{
u_{t,1}}
ight)}^2$$

Panchromatic SED modelling of Infrared Bright Galaxies

LOFAR FAMILY MEETING, JUNE 12-16, 2023

• Synchrotron emission

$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha$$

• Synchrotron and Free-Free Emission

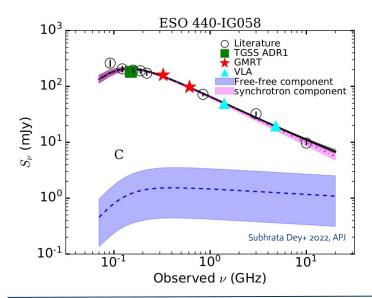
$$S_
u = A \Big(rac{
u}{
u_0} \Big)^lpha + B \Big(rac{
u}{
u_0} \Big)^{-0.1}$$

• Synchrotron and Free-Free Emission with Free-Free Absorption

$$S_
u = (1-e^{- au}) \left[B + A {\left(rac{
u}{
u_{t,1}}
ight)}^{0.1+lpha}
ight] \left(rac{
u}{
u_{t,1}}
ight)^2$$

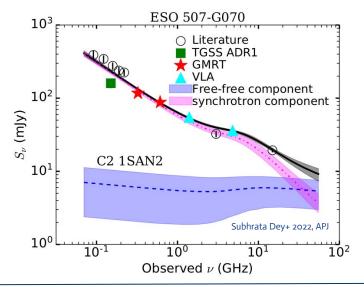
Multiple Component Models

$$egin{aligned} S_
u &= (1 - e^{- au_1}) \left[B + A \Big(rac{
u}{
u_{t,1}} \Big)^{0.1 + lpha}
ight] \Big(rac{
u}{
u_{t,1}} \Big)^2 \ + \ (1 - e^{- au_2}) \left[D + C \Big(rac{
u}{
u_{t,2}} \Big)^{0.1 + lpha}
ight] \Big(rac{
u}{
u_{t,2}} \Big)^2 \end{aligned}$$


$$egin{aligned} S_
u &= \left(rac{
u}{
u_0}
ight)^{-2.1} \left[B + A \left(rac{
u}{
u_0}
ight)^{0.1+lpha}
ight] \left(rac{
u}{
u_0}
ight)^2 + \ &(1-e^{- au_2}) \left[D + C \left(rac{
u}{
u_{t,2}}
ight)^{0.1+lpha}
ight] \left(rac{
u}{
u_{t,2}}
ight)^2 \end{aligned}$$

Panchromatic SED modelling of Infrared Bright Galaxies

UltraNest, Nested sampling bayesian inference method was used to constrain each of described radio continuum models and to compare models.


ESO 440-IG058

• Synchrotron free- free emission with absorption

ESO 507-G070

 Mix component model: Synchrotron free-free emission with absorption and power law

Panchromatic SED modelling of Infrared Bright Galaxies

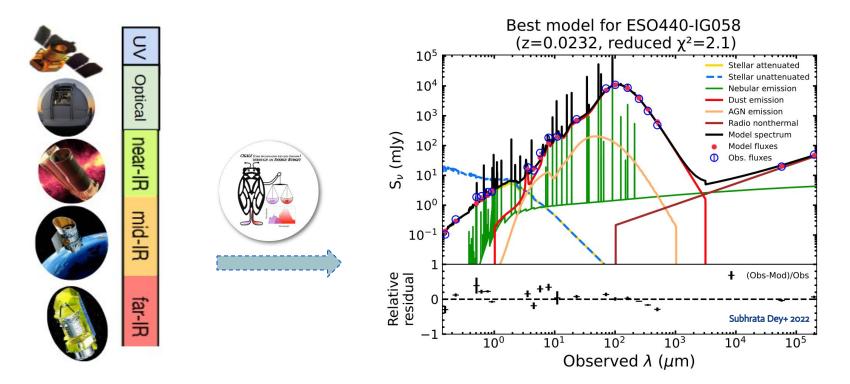
LOFAR FAMILY MEETING, JUNE 12-16, 2023

Results

Non-thermal normalisation component

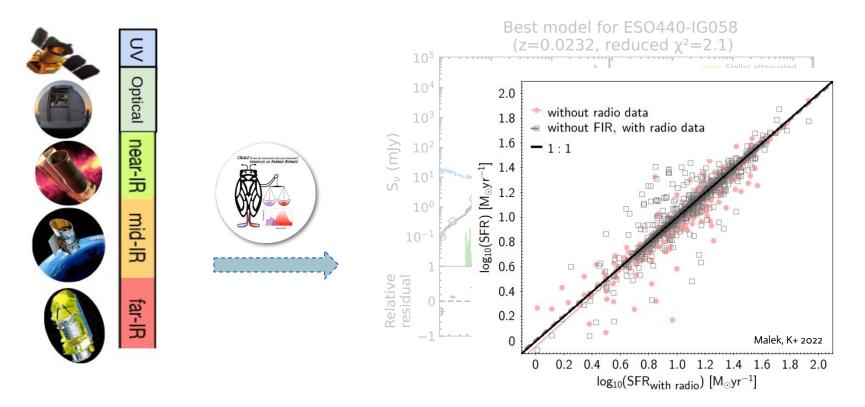
			/						
Name	Model	А	В	α	$ u_{t,1}$	С	D	$lpha_2$	$ u_{t,2}$
		(mJy)	(mJy)		(GHz)	(mJy)	(mJy)		(GHz)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ESO 500-G034	C2 1SAN	$6.21^{+2.23}_{-1.83}$	$3.58^{+3.13}_{-2.48}$	$-1.18^{+0.11}_{-0.12}$	-	$154.37^{+11.53}_{-10.90}$	$3.80^{+3.20}_{-2.64}$	-	$0.52\substack{+0.07 \\ -0.06}$
NGC 3508	\mathbf{PL}	$62.20^{+2.55}_{-2.31}$	-	$-0.73\substack{+0.02\\-0.02}$	-	-	-	-	- 1
ESO 440-IG058	\mathbf{C}	$325.81^{+19.13}_{-16.75}$	$1.79^{+2.33}_{-1.28}$	$-0.82\substack{+0.03\\-0.04}$	$0.14\substack{+0.02 \\ -0.02}$	-	-	H a	- 1
ESO 507-G070	$C2 \ 1SAN2$	$39.95_{-4.30}^{+4.46}$	$5.10^{+3.25}_{-3.30}$	$-0.77\substack{+0.05\\-0.06}$	-	$21.07^{+3.98}_{-4.20}$	$2.25^{+1.77}_{-1.53}$	$-1.50\substack{+0.38\\-0.22}$	$7.49^{+1.85}_{-2.01}$
NGC 5135	\mathbf{C}	$1294.29^{+80.51}_{-70.09}$	$7.34_{-5.28}^{+8.88}$	$-0.88\substack{+0.03\\-0.05}$	$0.13\substack{+0.02 \\ -0.02}$	-	-	-	_ *
IC 4280	\mathbf{C}	$359.44_{-30.17}^{+43.22}$	$10.43^{+5.69}_{-5.93}$	$-0.89\substack{+0.09\\-0.12}$	$0.13\substack{+0.03 \\ -0.03}$	-	-	-	- 2
NGC 6000	SFG NC	$144.60^{+3.21}_{-3.26}$	$0.48\substack{+0.34 \\ -0.32}$	$-0.66\substack{+0.01\\-0.02}$	-	-	-	. - 0	- 1
IR 16164-0746	SFG NC	$61.52^{+2.27}_{-2.33}$	$0.49^{+0.36}_{0.33}$	$-0.45\substack{+0.03\\-0.03}$	-	÷	-	-	-
ESO 453-G005	SFG NC	$22.34^{+1.06}_{-0.99}$	$0.52\substack{+0.32 \\ -0.35}$	$-0.59\substack{+0.04\\-0.04}$	-	-	-	-	_
IR 18293-3413	$C2 \ 1SAN2$	$34.13^{+12.20}_{-9.91}$	$4.09^{+3.28}_{-2.75}$	$-1.33\substack{+0.12\\-0.14}$	-	$373.64^{+42.37}_{-41.82}$	$4.19\substack{+3.08 \\ -2.79}$	$-1.74_{-0.05}^{+0.08}$	$1.06\substack{+0.08 \\ -0.09}$
ESO 593-IG008	С	$540.79_{-47.65}^{+73.47}$	$0.49^{+0.34}_{-0.34}$	$-0.87\substack{+0.03 \\ -0.03}$	$0.10\substack{+0.02 \\ -0.02}$	-	-	-	-

Panchromatic SED modelling of Infrared Bright Galaxies

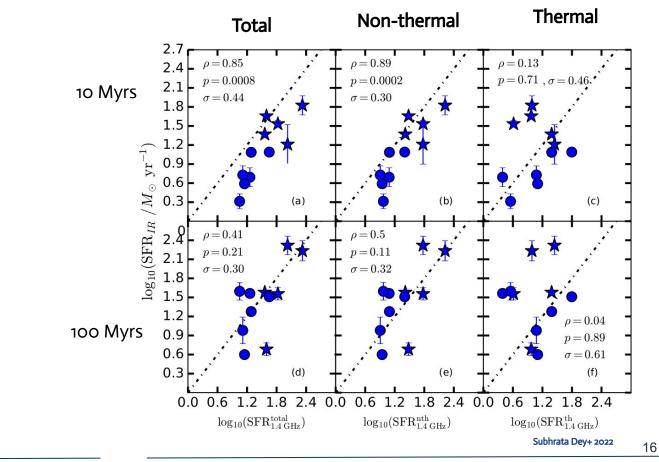

LOFAR FAMILY MEETING, JUNE 12-16, 2023

Therma	l normalisati	ion component
--------	---------------	---------------

Name	Model	А	В	α	$ u_{t,1}$	С	D	$lpha_2$	$ u_{t,2}$
		(mJy)	(mJy)		(GHz)	(mJy)	(mJy)		(GHz)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ESO 500-G034	$C2 \ 1SAN$	$6.21_{-1.83}^{+2.23}$	$3.58^{+3.13}_{-2.48}$	$-1.18\substack{+0.11\\-0.12}$	-	$154.37^{+11.53}_{-10.90}$	$3.80^{+3.20}_{-2.64}$	-	$0.52\substack{+0.07 \\ -0.06}$
NGC 3508	PL	$62.20^{+2.55}_{-2.31}$	-	$-0.73\substack{+0.02\\-0.02}$	-	-	-	-	- 1
ESO 440-IG058	\mathbf{C}	$325.81^{+19.13}_{-16.75}$	$1.79^{+2.33}_{-1.28}$	$-0.82\substack{+0.03\\-0.04}$	$0.14\substack{+0.02\\-0.02}$	-	-	-	-
ESO 507-G070	$C2 \ 1SAN2$	$39.95_{-4.30}^{+4.46}$	$5.10^{+3.25}_{-3.30}$	$-0.77\substack{+0.05 \\ -0.06}$	-	$21.07^{+3.98}_{-4.20}$	$2.25^{+1.77}_{-1.53}$ -	$-1.50^{+0.38}_{-0.22}$	$7.49^{+1.85}_{-2.01}$
NGC 5135	\mathbf{C}	$1294.29\substack{+80.51\\-70.09}$	$7.34^{+8.88}_{-5.28}$	$-0.88\substack{+0.03\\-0.05}$	$0.13\substack{+0.02 \\ -0.02}$	-	-	-	-
IC 4280	\mathbf{C}	$359.44_{-30.17}^{+43.22}$	$10.43^{+5.69}_{-5.93}$	$-0.89\substack{+0.09\\-0.12}$	$0.13\substack{+0.03 \\ -0.03}$	-	-	-	- 1
NGC 6000	SFG NC	$144.60^{+3.21}_{-3.26}$	$0.48\substack{+0.34 \\ -0.32}$	$-0.66\substack{+0.01\\-0.02}$	-	-	-	-	-
IR 16164-0746	SFG NC	$61.52^{+2.27}_{-2.33}$	$0.49^{+0.36}_{0.33}$	$-0.45\substack{+0.03\\-0.03}$	-	-	-	-	-
ESO 453-G005	SFG NC	$22.34^{+1.06}_{-0.99}$	$0.52\substack{+0.32 \\ -0.35}$	$-0.59\substack{+0.04\\-0.04}$	-	-	-	-	_
IR 18293-3413	$C2 \ 1SAN2$	$34.13^{+12.20}_{-9.91}$	$4.09\substack{+3.28 \\ -2.75}$	$-1.33\substack{+0.12\\-0.14}$	-	$373.64^{+42.37}_{-41.82}$	$4.19^{+3.08}_{-2.79}$ -	$-1.74_{-0.05}^{+0.08}$	$1.06\substack{+0.08 \\ -0.09}$
ESO 593-IG008	\mathbf{C}	$540.79_{-47.65}^{+73.47}$	$0.49\substack{+0.34 \\ -0.34}$	$-0.87\substack{+0.03 \\ -0.03}$	$0.10\substack{+0.02 \\ -0.02}$.=	-	-	-


Panchromatic SED modelling of Infrared Bright Galaxies

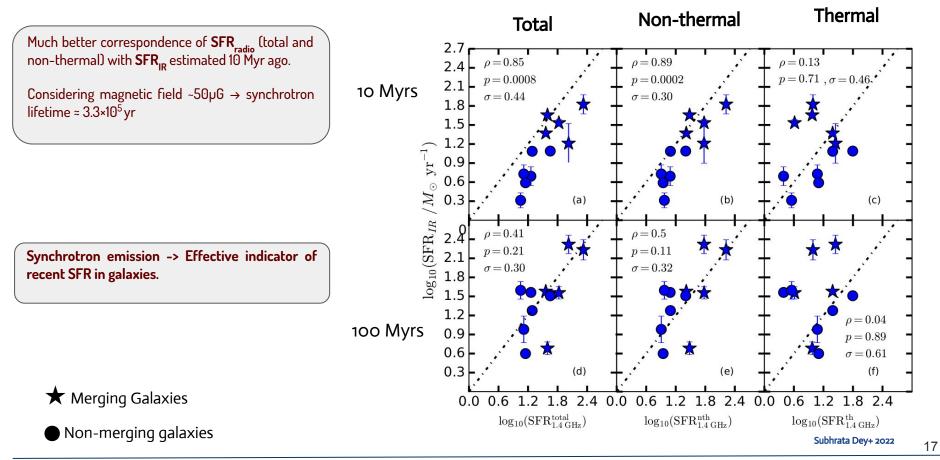
UV-radio SED modelling


Inclusion of radio fluxes in our UV-IR SED modeling \rightarrow the L_{dust} and SFR are estimated with one-order magnitude better accuracies

UV-radio SED modelling

Inclusion of radio fluxes in our UV-IR SED modeling \rightarrow the L_{dust} and SFR are estimated with one-order magnitude better accuracies

Comparison of SFR estimates from radio and UV-IR SED



 \star Merging Galaxies

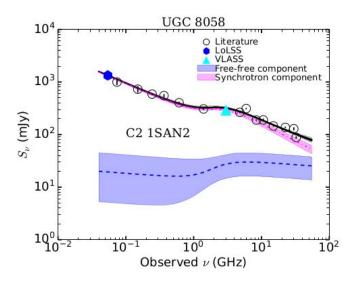
Non-merging galaxies

Panchromatic SED modelling of Infrared Bright Galaxies

Comparison of SFR estimates from radio and UV-IR SED

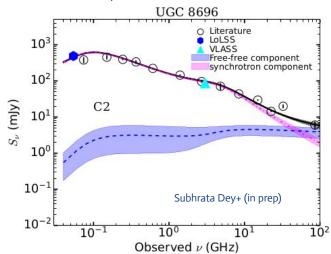
Panchromatic SED modelling of Infrared Bright Galaxies

ULIRGs: Sample Selection

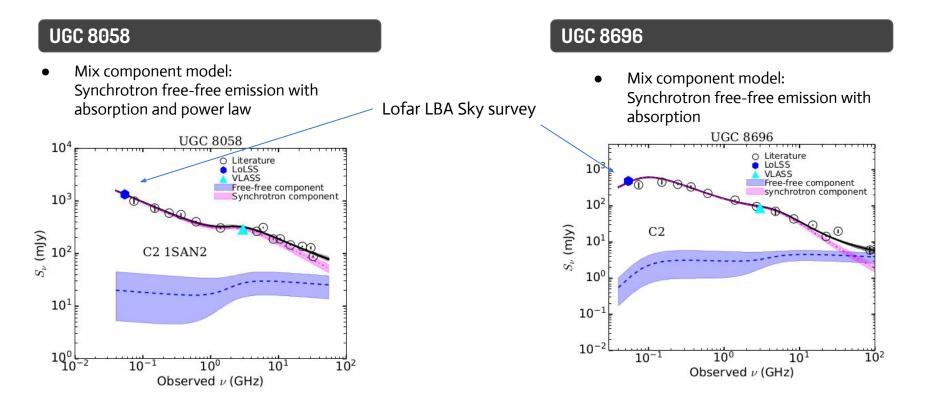

Source Name	R.A.(J2000)	decl.(J2000)	z	$\log_{10}(L_{\mathrm{IR}})$	Ref.
	(h m s)	(°′″)		(L_{\odot})	
(1)	(2)	(3)	(4)	(5)	(6)
IRAS F00183-7111	00 20 34.69	-70 55 26.7	0.3300	12.93^{a}	(f)
IRAS F03538-6432	$03 \ 54 \ 25.21$	-64 23 44.7	0.3007	12.62^{b}	(f)
IRAS 08572+3915	09 00 25.39	+39 03 54.40	0.0582	12.09^{c}	(g)
UGC 05101	$09 \ 35 \ 51.60$	$+61 \ 21 \ 11.5$	0.0393	11.90^{c}	(g)
IRAS 10565+2448	$10 \ 59 \ 18.12$	$+24 \ 32 \ 34.46$	0.0431	11.98^{c}	(g)
IRAS 12112+0305	$12 \ 13 \ 46.00$	$+02 \ 48 \ 38.0$	0.0733	12.28^{d}	(h)
UGC 08058	12 56 14.23	$+56\ 52\ 25.2$	0.0421	12.49^{c}	(g)
IRAS 13305-1739	$13 \ 33 \ 16.54$	-17 55 10.7	0.1483	12.21^{d}	(h)
UGC 8696	$13 \ 44 \ 42.11$	+55 53 12.7	0.0373	12.09^{c}	(g)
IRAS F14348-1447	14 37 38.40	-15 00 20.0	0.0823	12.30^{c}	(g)
IRAS 14394+5332	14 41 04.38	$+53 \ 20 \ 08.7$	0.1050	12.04^{d}	(h)
IRAS 17179+5444	17 18 54.40	+54 41 48.5	0.1476	12.20^{e}	(h)
IRASF 23529-2119	23 55 33.00	-21 03 08.7	0.4285	12.52^{b}	(f)
IRAS 23389+0300	$23 \ 41 \ 30.31$	+03 17 26.4	0.1450	12.09^{e}	(h)

1) source name, (2) R.A., (3) decl., (4) spectroscopic redshift from the NASA/IPAC Extragalactic Database (NED), (5) value of the absolute FIR luminosity (a)Spoon+ 2009, (b)braun+ 2011, (c)Clemens+ 2010, (d)Kim & Sanders 1998, (e)Veilleux+ 1999 (6) reference for the source selection: (f) Galvin+ 2016, (g) Clemens+ 2010, (h) Nandi+ 2021

Panchromatic SED modelling of Infrared Bright Galaxies

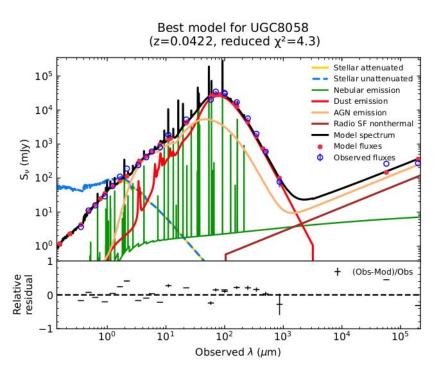

UGC 8058

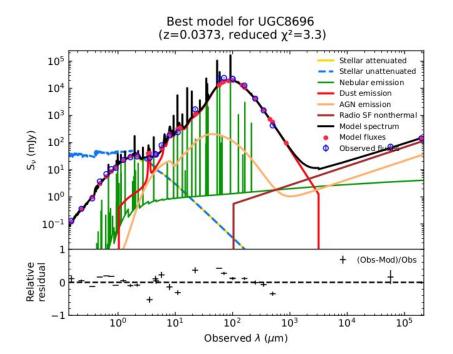
 Mix component model: Synchrotron free-free emission with absorption and power law



UGC 8696

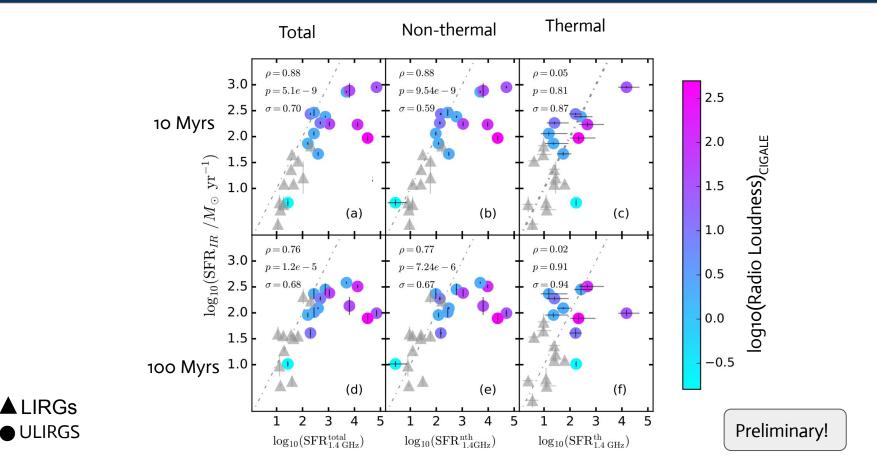
• Mix component model: Synchrotron free-free emission with absorption


LOFAR FAMILY MEETING, JUNE 12-16, 2023


Subhrata Dey+ (in prep)

UV-radio SED modelling

UGC 8696



Subhrata Dey+ (in prep)

Panchromatic SED modelling of Infrared Bright Galaxies

LOFAR FAMILY MEETING, JUNE 12-16, 2023

Comparison of SFR estimates from radio and UV-IR SED

Panchromatic SED modelling of Infrared Bright Galaxies

▲ LIRGs

RESULTS

- ★ The radio-only SED → complex features, showing bends and turnovers.
- ★ The nonthermal spectral → varies between -0.45 and -1.75
 Influence of star formation on the energetics of CRe.
- ★ Inclusion of radio fluxes in UV-IR SED modeling → the dust luminosities and SFR are estimated with one-order magnitude better accuracies than given in literature.
- ★ SFR_{radio}(total and non-thermal) estimated at 1.4 GHz show a close correspondence with SFR_{IR} (CIGALE) estimated 10 Myr ago →
 1.4 GHz SFR estimates is a good indicator of recent star formation.

LIRGs

RESULTS

- ★ The radio-only SED \rightarrow complex features, showing bends and turnovers.
- ★ The nonthermal spectral → varies between -0.45 and -1.75
 Influence of star formation on the energetics of CRe.
- ★ Inclusion of radio fluxes in UV-IR SED modeling → the dust luminosities and SFR are estimated with one-order magnitude better accuracies than given in literature.
- ★ SFR_{radio}(total and non-thermal) estimated at 1.4 GHz show a close correspondence with SFR_{IR} (CIGALE) estimated 10 Myr ago →
 1.4 GHz SFR estimates is a good indicator of recent star formation.

ULIRGs

LIRGs

★ SFR_{radio}(total and non-thermal) estimated at 1.4 GHz show a close correspondence with SFR_{IR} (CIGALE) estimated both **10 Myr and 100 Myr ago**

Thank you :)

Preliminary!

sdey@oa.uj.edu.pl