

UNIWERSYTET JAGIELLOŃSKI w KRAKOWIE

Multiwavelength study of an extended powerful radio galaxy 4C 70.19

Marek Weżgowiec et al., in collaboration with the LOFAR MKSP ZRiFK, Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego

LOFAR Family Meeting, Olsztyn, 14 ${ }^{\text {th }}$ June 2023

Well known (?) radio source

Lara et al., 2001, A\&A, 370, 409: J1557+706 (4C+70.19): it presents an FR I type morphology in the N-S direction. The northern jet bends by 180° towards the south, becoming diffuse and extended beyond the bend. The southern jet ends in an extended lobe-like region. At 4.9 GHz we only detect a compact core and the beginning of two rather symmetric jets, separated from the core by symmetric gaps.

$\underbrace{Z R \AA F}_{O A}$

Well known (?) radio source

WSRT 326 MHz cont. (Mack et al. 1997, A\&ASS, 123, 423) on LOFAR LOTSS 145 MHz map

Observations

Dedicated Effelsberg observations:

- 2.67 GHz ; beam 264"
- 4.85 GHz ; beam 150 "
- 8.35 GHz; beam 82"

```
\underbrace
```


Observations

Archival VLA observations:

- 1.43 GHz C-conf; beam 34" \rightarrow

ZRXFK
 OA

4C70.19 VLA 1.43GHz TP+PI B-vect

Observations

Archival VLA observations:

- 4.85 GHz C+D-confs; beam15" \rightarrow (Effelsberg data added)

LOFAR

LOTSS 145 MHz @ 6"

- core not visible
- otherwise a combination of ALL previous findings

Jet propagation

We took the LOFAR map and used the sobel filter to highlight the propagation of the jets...

Jet propagation

We took the LOFAR map and used the sobel filter to highlight the propagation of the jets...
...and constructed the profiles.

Jet propagation

Jet propagation

Spectral index

- Rather uniform index in the jets \rightarrow no compressions, but interesting knots just before the plumes start
- Relatively 'flat' index of the diffuse emission
- Re-acceleration?

Morphology of the source

No notable brightenings rather exclude compressions \rightarrow the increase in the degree of polarisation might point at shearing of the magnetic field (at decelleration point?).

Toroidally dominated magnetic field in the jets, longitudal in the N -plume (S-plume?)

Termination of deflected flow at the end of N -jet's path \rightarrow change of B-vectors

Is the magnetic field responsible for keeping the jets collimated out to $\sim 150 \mathrm{kpc}$?

In the jets $\mathrm{B} \sim 1.5 \mu \mathrm{G}$. Cocoon gas density from RM map $\sim 10^{-3} \mathrm{~cm}^{-3}$

Environment

NGC6048/4C70.19 likely interacts with fellow galaxies

Summary

- 4C70.19 is an FR I with jets that are well collimated over distances up to $\sim 150 \mathrm{kpc}$, likely due to magnetic fields
- Both jets end with a plume, but the southern one is bent more outwards and hidden from a direct view
- The 'twisted' shape of 4C70.19 results from interactions between the host galaxy NGC6048 and other group objects, as well as the disturbed propagation of the jets
- Interactions between the jets and the surrounding IGM are also imprinted in their magnetic fields
- Rotation Measures derived for 4C70.19 suggest/confirm a gaseous 'cocoon' with densities of the order of $10^{-3} \mathrm{~cm}^{-3}$

