

Clues on High-Energy Emission from Low-Frequency Radio Observations

Hrishikesh Shetgaonkar

Etienne Bonnassieux, Matthias Kadler, Marcus Brüggen

LOFAR

Blazars

- AGNs where jet is directed towards us
- Emit across the electromagnetic spectrum
- Relativistic beaming
- Particle accelerators
- Perfect laboratories for high-energy astrophysics!

European Southern Observatory (ESO)

Knots in Jets

3C 111 in Chandra X-ray (heat scale), 8 GHz VLA (cyan contours) Clautice et al., (2016)

- Compact bright regions in the jet
- Detection in X-rays -> emission processes?
- Re-acceleration mechanisms?
- Inverse scattering -> Photon field?
- High angular resolution necessary to separate the knots from core

Left: PKS 0637-752 in X-ray (top), optical (bottom) with 17 GHz radio contours

Right: Radio to X-ray SED Perlman et al. (2019)

Why LOFAR-VLBI?

Left : 4C +19.44 in Chandra X-Ray with LOFAR radio contours overlaid Right: MHz to GHz radio spectra of the jet. *Adapted from Harris et al., (2019)*

Why LOFAR-VLBI?

Left : 4C +19.44 in Chandra X-Ray with LOFAR radio contours overlaid Right: MHz to GHz radio spectra of the jet. *Adapted from Harris et al., (2019)*

Pilot Dataset

- Target: OJ287
- 8 hour observation
 - 13 June 2019
 - 13 international stations
- 5 TB of data!
- PI: Sean Mooney

Artist impression https://www.scientificeuropean.co.uk/sciences/space/flares-from-thesupermassive-binary-black-hole-oj-287-put-constraint-on-the-no-hair-theorem/

Pilot Dataset

- Target: OJ287
- 8 hour observation
 - 13 June 2019
 - 13 international stations
- 5 TB of data!
- PI: Sean Mooney

OJ287 in Chandra X-ray with VLA contours Marscher, A.P., Jorstad, S.G. (2011)

LOFAR

After one self-calibration pass, With International Stations

The journey so far...

- 'Artisian' self calibration with DDF and kMS
 - Pro: Deep understanding of imaging
 - Con: Takes too long!
- Downloaded LOFAR cycle 4 project 26 data for 6 blazars
- Setting up LOFAR-VLBI pipeline on local architecture in Würzburg
 - https://github.com/Imorabit/lofar-vlbi

Fullband LOFAR-VLBI image of OJ287

The journey so far...

- 'Artisian' self calibration with DDF and kMS
 - Pro: Deep understanding of imaging
 - Con: Takes too long!
- Downloaded LOFAR cycle 4 project 26 data for 6 blazars
- Setting up LOFAR-VLBI pipeline on local architecture in Würzburg
 - https://github.com/Imorabit/lofar-vlbi

Fullband LOFAR-VLBI image of OJ287

The road ahead...

- Run LOFAR-VLBI pipeline and some more 'artisian' self calibration
- Complement with high-frequency radio, optical and X-ray data
- Spectral Energy Distribution (SED) modelling to test models
 - IC/CMB, SSC, second synchrotron
- Repeat the analysis for other X-ray selected blazars!

Thank You! Question? Comments and suggestions?

Email: <u>hrishikesh.shetgaonkar@uni-wuerzburg.de</u> LinkedIn: <u>https://www.linkedin.com/in/hrishikesh-shetgaonkar/</u>

VLBI SelfCal, Pass 1, Target, Restored

(a) Image that includes the international stations (colour map) overlaid with data from just the core and remote stations (contours).

(b) A $10'' \times 10''$ cutout of the image that includes the international stations.

center=1 fk5 1 pixel	L33.7270 = 0.2 a	9 20.1094 rcsec	156			
reg	sum		error	area (arcsec**2)	surf_bri (sum/arcsec**2)	surf_err (sum/arcsec**2)
1	-0.2889	1329	0.537507	7 1477.8	-0.000195502	0.000363721
reg	sum	npix	mean	median min	max var	stddev rms
1	-0.2889	1329 3694	15 -7.826	009e-06 -2.4712e	2-05 -0.016241 0.0	0152849 1.55683e-05 0.00394567 0.00394568

Observation	A
Description	S
1641+399/1/TO	
(Target	
Observation)	
3C196/1/CO	
(Calibration	
1803+/84/1/10	
(Target	
(Calibration	
Observation)	
2230+114/1/TO	
(Target	
Observation)	
3C48/1/CO	
(Calibration	
Observation)	
1226+023/1/TO	
(Target	
Observation)	
3C196/1/CO	
(Calibration	
Observation)	
1823+568/1/TO	
(larget	
3C48/1/CO (Calibration	
Observation)	
0838+133/1/TO	
(Target	
Observation)	
3C196/1/CO	
(Calibration	
Observation)	

